Learn More
STRANDS are thin elastic solids that are visually well approximated as smooth curves, and yet possess essential physical behaviors characteristic of solid objects such as twisting. Common examples in computer graphics include: sutures, catheters, and tendons in surgical simulation; hairs, ropes, and vegetation in animation. Physical models based on spring(More)
In this paper we describe how to simulate geometrically complex, interactive, physically-based, volumetric, dynamic deformation models with <i>negligible main CPU costs.</i> This is achieved using a <i><b>Dy</b>namic <b>R</b>esponse <b>T</b>exture,</i> or <b>DyRT,</b> that can be mapped onto any conventional animation as an optional rendering stage using(More)
We describe algorithms for real-time synthesis of realistic sound effects for interactive simulations (e.g., games) and animation. These sound effects are produced automatically, from 3D models using dynamic simulation and user interaction. We develop algorithms that are efficient, physically-based, and can be controlled by users in natural ways. We develop(More)
We present a technique which allows subtle nonlinear quasi-static deformations of articulated characters to be compactly approximated by data-dependent eigenbases which are optimized for real time rendering on commodity graphics hardware. The method extends the common Skeletal-Subspace Deformation (SSD) technique to provide efficient approximations of the(More)
We introduce the Bounded Deformation Tree, or BD-Tree, which can perform collision detection with reduced deformable models at costs comparable to collision detection with rigid objects. Reduced deformable models represent complex deformations as linear superpositions of arbitrary displacement fields, and are used in a variety of applications of interactive(More)
We describe a system for constructing computer models of several aspects of physical interaction behavior, by scanning the response of real objects. The behaviors we can successfully scan and model include deformation response, contact textures for interaction with force-feedback, and contact sounds. The system we describe uses a highly automated robotic(More)