Dimitry S. A. Nuyten

Learn More
BACKGROUND Histologic grade in breast cancer provides clinically important prognostic information. However, 30%-60% of tumors are classified as histologic grade 2. This grade is associated with an intermediate risk of recurrence and is thus not informative for clinical decision making. We examined whether histologic grade was associated with gene expression(More)
Based on the hypothesis that features of the molecular program of normal wound healing might play an important role in cancer metastasis, we previously identified consistent features in the transcriptional response of normal fibroblasts to serum, and used this "wound-response signature" to reveal links between wound healing and cancer progression in a(More)
BACKGROUND Gene-expression-profiling studies of primary breast tumors performed by different laboratories have resulted in the identification of a number of distinct prognostic profiles, or gene sets, with little overlap in terms of gene identity. METHODS To compare the predictions derived from these gene sets for individual samples, we obtained a single(More)
The association between large tumor size and metastatic risk in a majority of clinical cancers has led to questions as to whether these observations are causally related or whether one is simply a marker for the other. This is partly due to an uncertainty about how metastasis-promoting gene expression changes can arise in primary tumors. We investigated(More)
BACKGROUND Inadequate oxygen (hypoxia) triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF), plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the(More)
Gene expression signatures encompassing dozens to hundreds of genes have been associated with many important parameters of cancer, but mechanisms of their control are largely unknown. Here we present a method based on genetic linkage that can prospectively identify functional regulators driving large-scale transcriptional signatures in cancer. Using this(More)
A better understanding of tumor metastasis requires development of animal models that authentically reproduce the metastatic process. By modifying an existing mouse model of breast cancer, we discovered that macrophage-stimulating protein promoted breast tumor growth and metastasis to several organs. A special feature of our findings was the occurrence of(More)
Many soft tissue tumors recapitulate features of normal connective tissue. We hypothesize that different types of fibroblastic tumors are representative of different populations of fibroblastic cells or different activation states of these cells. We examined two tumors with fibroblastic features, solitary fibrous tumor (SFT) and desmoid-type fibromatosis(More)
To tailor local treatment in breast cancer patients there is a need for predicting ipsilateral recurrences after breast-conserving therapy. After adequate treatment (excision with free margins and radiotherapy), young age and incompletely excised extensive intraductal component are predictors for local recurrence, but many local recurrences can still not be(More)
PURPOSE The majority of patients with early-stage breast cancer are treated with breast-conserving therapy (BCT). Several clinical risk factors are associated with local recurrence (LR) after BCT but are unable to explain all instances of LR after BCT. Here, gene expression microarrays are used to identify novel risk factors for LR after BCT. EXPERIMENTAL(More)