Learn More
This paper investigates a new learning formulation called <i>structured sparsity</i>, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set, this concept generalizes the group sparsity idea. A general theory is developed for learning with structured(More)
We describe a mixture density propagation algorithm to estimate 3D human motion in monocular video sequences based on observations encoding the appearance of image silhouettes. Our approach is discriminative rather than generative, therefore it does not require the probabilistic inversion of a predictive observation model. Instead, it uses a large human(More)
Intensity inhomogeneity often occurs in real-world images, which presents a considerable challenge in image segmentation. The most widely used image segmentation algorithms are region-based and typically rely on the homogeneity of the image intensities in the regions of interest, which often fail to provide accurate segmentation results due to the intensity(More)
State-of-the-art single image deblurring techniques are sensitive to image noise. Even a small amount of noise, which is inevitable in low-light conditions, can degrade the quality of blur kernel estimation dramatically. The recent approach of Tai and Lin [17] tries to iteratively denoise and deblur a blurry and noisy image. However, as we show in this(More)
Recent image retrieval algorithms based on local features indexed by a vocabulary tree and holistic features indexed by compact hashing codes both demonstrate excellent scalability. However, their retrieval precision may vary dramatically among queries. This motivates us to investigate how to fuse the ordered retrieval sets given by multiple retrieval(More)
The major challenge that faces American Sign Language (ASL) recognition now is developing methods that will scale well with increasing vocabulary size. Unlike in spoken languages, phonemes can occur simultaneously in ASL. The number of possible combinations of phonemes is approximately 1.5 × 10 9 , which cannot be tackled by conventional hidden Markov(More)
In this paper, we propose a new transductive learning framework for image retrieval, in which images are taken as vertices in a weighted hypergraph and the task of image search is formulated as the problem of hypergraph ranking. Based on the similarity matrix computed from various feature descriptors, we take each image as a &#x2018;centroid&#x2019; vertex(More)
We present a comprehensive methodology for realistically animating liquid phenomena. Physically accurate 3D motion is achieved by performing a two-stage calculation over an arbitrary environment of static obstacles surrounded by uid. A nite diierence approximation to the Navier-Stokes equations is rst applied to a low resolution, vox-elized representation(More)
We present algorithms for recognizing human motion in monocular video sequences, based on discriminative conditional random field (CRF) and maximum entropy Markov models (MEMM). Existing approaches to this problem typically use generative (joint) structures like the hidden Markov model (HMM). Therefore they have to make simplifying, often unrealistic(More)
We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit(More)