Learn More
In this study, a pattern recognition system has been developed for the discrimination of multiple sclerosis (MS) from cerebral microangiopathy (CM) lesions based on computer-assisted texture analysis of magnetic resonance images. Twenty-three textural features were calculated from MS and CM regions of interest, delineated by experienced radiologists on(More)
A multi-classifier diagnostic system was designed for distinguishing between benign and malignant thyroid nodules from routinely taken (FNA, H&E-stained) cytological images. To construct the multi-classifier system, several combination rules and different mixtures of ensemble classifier members, employing morphological and textural nuclear features, were(More)
Grading of astrocytomas is an important task for treatment planning; however, it suffers from significantly great inter-observer variability. Computer-assisted diagnosis systems have been propose to assist towards minimizing subjectivity, however, these systems present either moderate accuracy or utilize specialized staining protocols and grading systems(More)
A computer-aided diagnosis system was developed for assisting brain astrocytomas malignancy grading. Microscopy images from 140 astrocytic biopsies were digitized and cell nuclei were automatically segmented using a Probabilistic Neural Network pixel-based clustering algorithm. A decision tree classification scheme was constructed to discriminate low,(More)
MOTIVATION One of the major factors that complicate the task of microarray image analysis is that microarray images are distorted by various types of noise. In this study a robust framework is proposed, designed to take into account the effect of noise in microarray images in order to assist the demanding task of microarray image analysis. The proposed(More)
A wavelet-based modification of the Markov random field (WMRF) model is proposed for segmenting complementary DNA (cDNA) microarray images. For evaluation purposes, five simulated and a set of five real microarray images were used. The one-level stationary wavelet transform (SWT) of each microarray image was used to form two images, a denoised image, using(More)
The objective of this paper was to investigate the segmentation ability of the fuzzy Gaussian mixture model (FGMM) clustering algorithm, applied on complementary DNA (cDNA) images. Following a standard established procedure, a simulated microarray image of 1600 cells, each containing one spot, was produced. For further evaluation of the algorithm, three(More)
Brain tumours grading is a crucial step for determining treatment planning and patient management. The grade of a tumour is defined by pathologists after reviewing biopsies under the microscope, a procedure that has been proven highly subjective. In this work, we propose a computer-based system for the automatic classification of astrocytomas that can be(More)
Purpose: In this paper we address the demanding diagnostic problem of classifying tumors according to the degree of their malignancy by investigating the efficiency of Support Vector Machines (SVMs) and Probabilistic neural networks (PNN). Material and methods: 129 cases of urinary bladder carcinomas were diagnosed as high or low-risk according to the WHO(More)