#### Filter Results:

- Full text PDF available (3)

#### Publication Year

2005

2014

- This year (0)
- Last 5 years (1)
- Last 10 years (1)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Dimitris Gatzouras, Giannopoulos Apostolos, Nikolaos Markoulakis
- Discrete & Computational Geometry
- 2005

Let fn−1(P ) denote the number of facets of a polytope P in R . We show that there exist 0/1 polytopes P with fn−1(P ) ≥ ( cn log n )n/2 where c > 0 is an absolute constant. This improves earlier work of Bárány and Pór on a question of Fukuda and Ziegler.

We show that there exist 0/1 polytopes in Rn whose number of facets exceeds ( cn log n )n/2 , where c > 0 is an absolute constant.

- M . ANOUSSIS, Dimitris Gatzouras
- 2006

Let G be a semi-direct product G = A×φ K with A Abelian and K compact. We characterize spread-out probability measures on G that are mixing by convolutions by means of their Fourier transforms. A key tool is a spectral radius formula for the Fourier transform of a regular Borel measure on G that we develop, and which is analogous to the well-known Beurling–… (More)

- ‹
- 1
- ›