Dimitrios G Papazoglou

Learn More
We demonstrate the realization of intense Airy-Airy-Airy (Airy(3)) light bullets by combining a spatial Airy beam with an Airy pulse in time. The Airy(3) light bullets belong to a family of linear spatiotemporal wave packets that do not require any specific tuning of the material optical properties for their formation and withstand both diffraction and(More)
Controlling the propagation of intense optical wavepackets in transparent media is not a trivial task. During propagation, low- and high-order non-linear effects, including the Kerr effect, multiphoton absorption and ionization, lead to an uncontrolled complex reshaping of the optical wavepacket that involves pulse splitting, refocusing cycles in space and(More)
We report on the experimental observation of abruptly autofocusing waves. This interesting family of wave packets has been realized by using a radially symmetric Airy intensity distribution. As demonstrated in our experiments, these waves can exhibit unusual features, such as the ability to autofocus by following a parabolic trajectory toward their focus.
We present an easy way to calibrate the simple plasma conductivity (PCo) technique for measuring electron plasma densities in gases. We show that calibration can be achieved using a single absolute plasma density measurement through an independent analytical technique, in our case the in-line holographic microscopy (i-HOM). We show the validity and power of(More)
The process of third-harmonic generation during the filamentation of intense IR femtosecond laser pulses in air is investigated experimentally. It is shown that the introduction of a thin plasma string created by another femtosecond pulse, perpendicularly to the filament's path, dramatically reshapes the third-harmonic beam into a Bessel-like far-field(More)
We study the effect of Two-Photon Absorption (TPA) nonlinear losses on Gaussian pulses, with power that exceeds the critical power for self-focusing, propagating in bulk kerr media. Experiments performed in fused silica and silicon highlight a spontaneous reshaping of the input pulse into a pulsed Bessel beam. A filament is formed in which sub-diffractive(More)
We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out(More)
Long self-trapped femtosecond ultraviolet filaments created in the bulk of pure fused silica are used to induce permanent structural changes in the medium. We monitor the laser pulse propagation as a filamentary structure and the plasma string left at its trail. We investigate and demonstrate the link of the filament-induced plasma to the permanent(More)
KANG LIU, ANASTASIOS D. KOULOUKLIDIS, DIMITRIOS G. PAPAZOGLOU, STELIOS TZORTZAKIS, AND XI-CHENG ZHANG* The Institute of Optics, University of Rochester, 275 Hutchison Road, Rochester, New York 14627, USA Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion, Greece Department of Material(More)
Femtosecond filamentation inside a periodic lattice in air is numerically shown to form intense dynamic bullets. The long propagation distance of the bullet structure is primarily attributed to the effect of the lattice that regulates the competition between linear and nonlinear spatiotemporal effects in the region of normal dispersion.