Dilworth Y. Parkinson

Learn More
Two-color photon echo peak shift spectroscopy was used to study electronic coupling in a phthalocyanine homodimer. Two optical parametric amplifiers were used to produce pulses to excite the split lower states of LuPc2-. The existence of a two-color peak shift indicates the existence of correlation between these two dipole-allowed states. The nature of this(More)
Ceramic matrix composites are the emerging material of choice for structures that will see temperatures above ~1,500 °C in hostile environments, as for example in next-generation gas turbines and hypersonic-flight applications. The safe operation of applications depends on how small cracks forming inside the material are restrained by its microstructure. As(More)
Synchrotron based X-ray tomography is widely used for three dimensional imaging of materials at the micron scale. Tomographic data collected from a synchrotron is often affected by non-idealities in the measurement system and sudden “blinding” of detector pixels during the acquisition. Typically, reconstructions are done using analytical(More)
We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance(More)
One- and two-color, three-pulse photon echo peak shift spectroscopy (1C and 2C3PEPS) was used to estimate the electronic coupling between the accessory bacteriochlorophyll (B) and the bacteriopheophytin (H) in the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides as approximately 170 +/- 30 cm-1. This is the first direct(More)
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems,(More)
Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small(More)
We performed two-color three-pulse photon echo peak shift experiments on Nile blue in ethylene glycol and acetonitrile to determine the role of solvent dynamics in correlated spectral motion. The system was pumped near the absorption maximum and the correlation between the initial state and the final state was probed at a number of wavelengths, from the(More)
We exploit a coherently excited nuclear wave packet to study nuclear motion modulation of electronic structure in a metal bridged phthalocyanine dimer, lutetium bisphthalocyanine, which displays two visible absorption bands. We find that the nuclear coordinate influences the energies of the underlying exciton and charge resonance states as well as their(More)
BACKGROUND The potential transfer of engineered nanoparticles (ENPs) from plants into the food chain has raised widespread concerns. In order to investigate the effects of ENPs on plants, young cabbage plants (Brassica oleracea) were exposed to a hydroponic system containing yttrium oxide (yttria) ENPs. The objective of this study was to reveal the impacts(More)