Diletta Dolfini

Learn More
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely(More)
Regulated gene expression is essential for a proper progression through the cell cycle. The transcription factor NF-Y has a fundamental function in transcriptional regulation of cell cycle genes, particularly of G2/M genes. In order to investigate common and distinct functions of NF-Y subunits in cell cycle regulation, NF-YA, NF-YB and NF-YC have been(More)
p53 and p63 are transcription factors -TFs- playing master roles in the DNA-damage response and in the development and maintenance of pluristratified epithelia, respectively. p53 mutations are common in epithelial tumors and HaCaT keratinocytes harbor two p53 alleles -H179Y and R282Q- with gain-of-function (GOF) activity. Indeed, functional inactivation of(More)
Most of the key effectors of apoptosis are constitutively expressed in cells and ready to operate; however, activation of diverse transcription factors (TFs), specific for noxious conditions, eventually leads to alteration of the transcriptome and expression of proapoptotic proteins. Several recent reports pointed at NF-Y as yet another TF having a –(More)
BACKGROUND Histone tails have a plethora of different post-translational modifications, which are located differently in "open" and "closed" parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is the(More)
BACKGROUND Different histone post-translational modifications (PTMs) are crucial in the regulation of chromatin, including methylations of H3 at Lysine 4 by the MLL complex. A relevant issue is how this is causally correlated to the binding of specific transcription factors (TFs) in regulatory regions. NF-Y is a TF that regulates 30% of mammalian promoters(More)
NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein-protein interactions and RNA profiling data, in order to identify genome-wide(More)
The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings(More)
A considerable proportion of the human genome consists of transposable elements, including the long terminal repeats (LTRs) of endogenous retroviruses. During evolution, such LTRs were occasionally inserted upstream of protein-coding genes, contributing to their regulation. We previously identified the LTR12 from endogenous retrovirus 9 (ERV9) as a(More)
C/EBPs are a family of B-Zip transcription factors--TFs--involved in the regulation of differentiation in several tissues. The two most studied members--C/EBPα and C/EBPβ--play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of(More)
  • 1