Dilek Tezcan-Merdol

Learn More
The Salmonella enterica virulence-associated protein SpvB was recently shown to contain a carboxy-terminal mono(ADP-ribosyl)transferase domain. We demonstrate here that the catalytic domain of SpvB as well bacterial extracts containing full-length SpvB modifies a 43 kDa protein from macrophage-like J774-A.1 and epithelial MDCK cells as shown by label(More)
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar(More)
A number of well-known bacterial toxins ADP-ribosylate and thereby inactivate target proteins in their animal hosts. Recently, several vertebrate ecto-enzymes (ART1-ART7) with activities similar to bacterial toxins have also been cloned. We show here that PSIBLAST, a position-specific-iterative database search program, faithfully connects all known(More)
The virulence-associated SpvB protein of Salmonella enterica is a mono (ADP-ribosyl)transferase defined to target mammalian actin. Exposure of Acanthamoeba rhysodes cell lysate with SpvB and [32P]nicotinamide adenine dinucleotide (NAD) was here observed to result in labeling of a protein of 43 kDa that subsequently was identified as actin by(More)
In order to infect a host, a microbe must be equipped with special properties known as virulence factors. Bacterial virulence factors are required to facilitate colonization, to survive under host defenses, and to permit multiplication inside the host. However, the possession of genes encoding virulence factors does not guarantee effective infection. There(More)
  • 1