Dietrich Klakow

Learn More
A new method is presented to quickly adapt a given language model to local text characteristics. The basic approach is to choose the adaptive models as close as possible to the background estimates while constraining them to respect the locally estimated unigram probabilities. Several means are investigated to speed up the calculations. We measure both(More)
The PASCAL Speech Separation Challenge (SSC) is based on a corpus of sentences from the Wall Street Journal task read by two speakers simultaneously and captured with two circular eight-channel microphone arrays. This work describes our system for the recognition of such simultaneous speech. Our system has four principal components: A person tracker returns(More)
Spoken Language Systems at Saarland University (LSV) participated this year with 5 runs at the TAC KBP English slot filling track. Effective algorithms for all parts of the pipeline, from document retrieval to relation prediction and response post-processing, are bundled in a modular end-to-end relation extraction system called RelationFactory. The main run(More)
Named Entity Recognition is a relatively well-understood NLP task, with many publicly available training resources and software for English. Other languages tend to be underserved in this area. For German, CoNLL-2003 provides training data, but there are no publicly available, ready-to-use tools. We fill this gap and develop a German NER system with(More)
This paper presents a survey on the role of negation in sentiment analysis. Negation is a very common linguistic construction that affects polarity and, therefore, needs to be taken into consideration in sentiment analysis. We will present various computational approaches modeling negation in sentiment analysis. We will, in particular, focus on aspects,(More)
The problem of unknown words has been addressed using automatically generated ller fragments which augment the lexicon and are incorporated in the language model. These fragments are used to reduce the damage on in-vocabulary words, to detect OOV regions and to provide a phonetic transcription for these regions. The performance of this technique has been(More)