Learn More
Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine(More)
Little is known about below-ground competition between different tree species in mixed forests. We investigated the evidence for asymmetric competition between fine roots (<2 mm) of adult European beech (Fagus sylvatica) and sessile oak (Quercus petraea) trees in a mixed temperate beech-oak forest by (1) conducting fine-root growth experiments in the field(More)
Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha(-1) yr(-1)) and P (10 kg ha(-1) yr(-1)). Monitoring of nutrient fluxes demonstrated that the(More)
Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However,(More)
Leaf and fine root morphology and physiology have been found to vary considerably among tree species, but not much is known about intraspecific variation in root traits and their relatedness to leaf traits. Various aspen progenies (Populus tremula and P. tremuloides) with different growth performance are used in short-rotation forestry. Hence, a better(More)
Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought(More)
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares(More)
To determine the exchange of nitrogen and carbon between ectomycorrhiza and host plant, young beech (Fagus sylvatica) trees from natural regeneration in intact soil cores were labelled for one growing season in a greenhouse with 13CO2 and 15NO3 15NH4. The specific enrichments of 15N and 13C were higher in ectomycorrhizas (EMs) than in any other tissue. The(More)
According to recent climate change scenarios, temperate forests will be increasingly exposed to droughts in the 21st century which are thought to affect productivity. Although decreasing timber yield with reduced precipitation has frequently been reported from temperate forests, the dependence of forest net primary production (NPP) on precipitation is(More)
Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to(More)