Dietrich Gudat

  • Citations Per Year
Learn More
Computational studies on a series of polyphospholyl-substituted N-heterocyclic phosphines (CH)(2)(NR)(2) P-P(n)(CH)(5-n) (R=Me, n=1-5) disclosed that increasing formal replacement of CH units in the phosphole ring by phosphorus atoms is associated with an increase in P-P distances and charge separation, and a decrease in covalent bond orders. Altogether,(More)
The direct reaction of an imidazole-2-ylidene in a predominantly aqueous environment [about 0.1 M solution in a H(2)O (>60%)/THF solvent system] was investigated for the first time. The reaction yielded a stable solution of the corresponding imidazolium-hydroxide of pH 13, which is in agreement with results from an ab initio molecular dynamics simulation.(More)
1,3,2-diazaphospholenes and related compounds can formally be regarded as complexes of phosphinidenes (R-P) with 1,4-diazabutadienes. The dissociation Gibbs free energies of these "complexes" were calculated by using density functional theory (B3LYP/3-21G(*) and B3LYP/6-311+G**). The dissociation Gibbs free energies show systematic dependence on the(More)
P-Cyclopentadienyl-substituted 1,3,2-diazaphospholenes were prepared by salt metathesis from NaCp or LiCp* and 2-chloro-1,3,2-diazaphospholenes. Comprehensive spectroscopic and X-ray diffraction studies revealed a significant lengthening of the phosphorus-carbon bonds as compared with typical P-C bond distances, and the presence of fluxional molecular(More)
A series of P-phospholyl-substituted N-heterocyclic phosphines was prepared and characterized by single-crystal X-ray diffraction and solution and solid-state (31)P NMR spectroscopy. The molecular structures are distinguished by the presence of P-P bonds of exceptionally variable lengths (2.35-2.70 A) that are all well beyond the standard distance of 2.21(More)
P-Hydrogen-substituted 1,3,2-diazaphospholenes 1 were prepared by an improved procedure from diazadienes and were characterized by spectroscopy and in one case by X-ray diffraction. A unique hydride-type reactivity of the P-H bonds was documented by extensive reactivity studies. Aldehydes and ketones were readily reduced to diazaphospholene derivatives of(More)
Thermolysis of 2-azido-1,3,2-diazaphospholenes offers access to novel and rare spirocyclic cyclodiphosphazenes. The spectroscopic data and X-ray structure of one representative of the 2-azido-1,3,2-diazaphospholenes reveals an ionic bonding situation explaining sufficiently its rather high thermal stability. The cyclodiphosphazenes were characterised by(More)
NMR studies of reactions between some N-heterocyclic and acyclic diamino phosphenium ions (R2N)2P+ and P-chlorophosphines (R2N)2PCl suggest that the reactants interact via chloride scrambling rather than by formation of P-P bonded phosphenium-phosphine complexes. Computational studies of reactions between model ions (R'2N)2P+ and neutral phosphines(More)