Learn More
Recent contributions from DNA sequences have revolutionized our concept of systematic relationships in angiosperms. However, parts of the angiosperm tree remain unclear. Previous studies have been based on coding or rDNA regions of relatively conserved genes. A phylogeny for basal angiosperms based on noncoding, fast-evolving sequences of the chloroplast(More)
Phylogenetic relationships among the four major lineages of land plants (liverworts, mosses, hornworts, and vascular plants) remain vigorously contested; their resolution is essential to our understanding of the origin and early evolution of land plants. We analyzed three different complementary data sets: a multigene supermatrix, a genomic structural(More)
Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from(More)
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of(More)
Section Arachis is the largest of nine sections in the genus Arachis and includes domesticated peanut, A. hypogaea L. Most species are diploids (x=10) with two tetraploids and a few aneuploids. Three genome types have been recognized in this section (A, B and D), but the genomes are not well characterized and relationships of several newly described species(More)
Piperales represent the largest basal angiosperm order with a nearly worldwide distribution. The order includes three species rich genera, Piper (ca. 2000 species), Peperomia (ca. 1500-1700 species), and Aristolochia s. l. (ca. 500 species). Sequences of the matK gene and the non-coding trnK group II intron are analysed for a dense set of 105 taxa(More)
The economically important genus Arachis (Fabaceae) comprises 80 species restricted to South America. One monograph on the genus divided it into nine sections and included an intuitive assessment of evolutionary relationships. There is no comprehensive phylogenetic study of the genus. To test the current systematic treatment of the genus, we reconstructed a(More)
UNLABELLED PREMISE OF THE STUDY Land plants play an essential role in the evolution of terrestrial life. Their time of origin and diversification is fundamental to understanding the evolution of life on land. We investigated the timing and the rate of molecular evolution of land plants, evaluating the effects of different types of molecular data,(More)
Introns and spacers are a rich and well-appreciated information source for evolutionary studies in plants. Compared to coding sequences, the mutational dynamics of introns and spacers is very different, involving frequent microstructural changes in addition to substitutions of individual nucleotides. An understanding of the biology of sequence change is(More)
UNLABELLED PREMISE OF THE STUDY The Cactaceae are a major New World plant family and popular in horticulture. Still, taxonomic units and species limits have been difficult to define, and molecular phylogenetic studies so far have yielded largely unresolved trees, so relationships within Cactaceae remain insufficiently understood. This study focuses on(More)