Dietmar H. Pieper

Learn More
BACKGROUND Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been(More)
Ralstonia eutropha JMP134(pJP4) is able to grow on minimal media containing the pollutants 3-chlorobenzoate (3-CB) or 2,4-dichlorophenoxyacetate (2,4-D). tfd genes from the 88 kb plasmid pJP4 encode enzymes involved in the degradation of these compounds. During growth of strain JMP134 in liquid medium containing 3-CB, a derivative strain harbouring a(More)
Rhodococcus sp. strain HA01, isolated through its ability to utilize dibenzofuran (DBF) as the sole carbon and energy source, was also capable, albeit with low activity, of transforming dibenzo-p-dioxin (DD). This strain could also transform 3-chlorodibenzofuran (3CDBF), mainly by angular oxygenation at the ether bond-carrying carbon (the angular position)(More)
Three bacterial strains, designated MT1(T), RW10(T) and IpA-2(T), had been isolated previously for their ability to degrade chlorosalicylates or isopimaric acid. 16S rRNA gene sequence analysis demonstrated that these bacteria are related to species of the genus Pseudomonas. Analysis of the results of DNA-DNA hybridization with several close phylogenetic(More)
Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP),(More)
Genetic engineering is a powerful means of accelerating the evolution of new biological activities and has considerable potential for constructing microorganisms that can degrade environmental pollutants. Critical enzymes from five different catabolic pathways of three distinct soil bacteria have been combined in patchwork fashion into a functional ortho(More)
Nursing home residents are a population at risk for carrying meticillin-resistant Staphylococcus aureus (MRSA). To better guide infection control and healthcare network initiatives, we investigated the point prevalence and molecular epidemiology of MRSA colonisation among nursing home residents in Brunswick, northern Germany. Among the 32 participating(More)
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was(More)
The extradiol dioxygenase diversity of a site highly contaminated with aliphatic and aromatic hydrocarbons under air-sparging treatment was assessed by functional screening of a fosmid library in Escherichia coli with catechol as substrate. The 235 positive clones from inserts of DNA extracted from contaminated soil were equivalent to one extradiol(More)