Diek W. Wheeler

Learn More
The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded(More)
We present a non-parametric and computationally efficient method named NeuroXidence that detects coordinated firing of two or more neurons and tests whether the observed level of coordinated firing is significantly different from that expected by chance. The method considers the full auto-structure of the data, including the changes in the rate responses(More)
In cat visual cortex, we investigated with parallel recordings from multiple units the neuronal correlates of perceived brightness. The perceived brightness of a center grating was changed by varying the orientation or the relative spatial phase of a surrounding grating. Brightness enhancement by orientation contrast is associated with an increase of(More)
To investigate neuronal processing during short-term memory, we analyzed behavior-related modulations of coupling between signals on two spatial scales: first, very local multiunit activity and second, local field potentials. Coupling was assessed by spike field coherence using a new approach to overcome limitations in cases of low firing rates. We(More)
Biological gain mechanisms regulate the sensitivity and dynamics of signaling pathways at the systemic, cellular, and molecular levels. In the sympathetic nervous system, gain in sensory-motor feedback loops is essential for homeostatic regulation of blood pressure and body temperature. This study shows how synaptic convergence and plasticity can interact(More)
Hippocampome.org is a comprehensive knowledge base of neuron types in the rodent hippocampal formation (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex). Although the hippocampal literature is remarkably information-rich, neuron properties are often reported with incompletely defined and notoriously inconsistent terminology, creating a(More)
We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to the resonating properties of the neurons. Recording of(More)
Synchronous neuronal firing has been proposed as a potential neuronal code. To determine whether synchronous firing is really involved in different forms of information processing, one needs to directly compare the amount of synchronous firing due to various factors, such as different experimental or behavioral conditions. In order to address this issue, we(More)
The open-plus-closed-loop (OPCL) entrainment control put forth by Jackson and Grosu [Physica D 85, 1 (1995)] is applied to an effective-neuron system as a way to extract stable limit cycles from a chaotic attractor, analogous to the retrieval of memories from a memory searching state. Additive Gaussian white noise, representing the natural noise inherent in(More)
  • 1