Diego R. Amancio

Learn More
The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with regard to the authors or journals cited. In this(More)
Many features from texts and languages can now be inferred from statistical analyses using concepts from complex networks and dynamical systems. In this paper we quantify how topological properties of word co-occurrence networks and intermittency (or burstiness) in word distribution depend on the style of authors. Our database contains 40 books from 8(More)
The classification of texts has become a major endeavor with so much electronic material available, for it is an essential task in several applications, including search engines and information retrieval. There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the(More)
Pattern recognition has been employed in a myriad of industrial, commercial and academic applications. Many techniques have been devised to tackle such a diversity of applications. Despite the long tradition of pattern recognition research, there is no technique that yields the best classification in all scenarios. Therefore, as many techniques as possible(More)
Methods from statistical physics, such as those involving complex networks, have been increasingly used in quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity.(More)
Many features of complex systems can now be unveiled by applying statistical physics methods to treat them as social networks. The power of the analysis may be limited, however, by the presence of ambiguity in names, e.g. caused by homonymy in collaborative networks. In this paper we show that the ability to distinguish between homonymous authors is(More)
While the use of statistical physics methods to analyze large corpora has been useful to unveil many patterns in texts, no comprehensive investigation has been performed on the interdependence between syntactic and semantic factors. In this study we propose a framework for determining whether a text (e.g., written in an unknown alphabet) is compatible with(More)
Complex networks have been employed to model many real systems and as a modeling tool in a myriad of applications. In this paper, we use the framework of complex networks to the problem of supervised classification in the word disambiguation task, which consists in deriving a function from the supervised (or labeled) training data of ambiguous words.(More)
The use of statistical methods to analyze large databases of text has been useful to unveil patterns of human behavior and establish historical links between cultures and languages. In this study, we identify literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to(More)