Learn More
In this paper, a methodology for the streamlining of the sensitization procedure of flowerlike ZnO nanostructures for dye-sensitized solar cells (DSCs) is reported. The sensitization of ZnO surface with ruthenium-based complexes is a particularly critical process, since one has to minimize the dissolution of surface Zn atoms by the protons released from the(More)
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may(More)
Manganese oxides (MnOx), being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs). This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC) films of commercial Mn₂O₃, Mn₃O₄ and MnO₂ powders. Spin coating consists of few preparation steps and(More)
Here we report on a novel polymer electrolyte membrane for quasi-solid dye-sensitized solar cells (DSSCs) with excellent efficiency and extended durability. The electrolyte is prepared by an elegant, rapid and cheap UV-induced polymerization method and the chemometric approach is used for the first time, to the best of our knowledge, for the optimization(More)
Tellurite glasses are low phonon energy optical materials suitable for the development of optical devices in the near to mid-IR wavelength region. An additional interesting property is their high nonlinearity, which offers the possibility to fabricate specialty core-clad optical fibres for the development of compact supercontinuum sources characterized by(More)
In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection(More)
Calcium-phosphate glasses (CPGs) are unique materials for hard and soft tissue engineering, as they can be fully resorbed in physiological conditions and can interact in various ways with the human body. Moreover, they have interesting properties for applications in optics and photonics. We will report the recent progress in the development of a new(More)
UV-Vis spectroscopic measurements have been performed on Dye-Sensitized Solar Cell (DSSC) photoanodes at different dye impregnation times ranging from few minutes to 24 hours. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance of dye impregnated thin films and on the desorption of dye molecules from the(More)
A simple hemi-squaraine dye (CT1) has been studied as a TiO2 sensitizer for application in dye sensitized solar cells (DSCs) by means of a combined experimental and theoretical investigation. This molecule is a prototype dye presenting an innovative anchoring group: the squaric acid moiety. Ab initio calculations based on Density Functional Theory (DFT)(More)
Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al₂O₃, TiO₂, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field(More)