Diego O. Hartmann

Learn More
Lipid polymers in plant cell walls, such as cutin and suberin, build recalcitrant hydrophobic protective barriers. Their degradation is of foremost importance for both plant pathogenic and saprophytic fungi. Regardless of numerous reports on fungal degradation of emulsified fatty acids or cutin, and on fungi–plant interactions, the pathways involved in the(More)
The inherent potential of filamentous fungi, especially of Ascomycota, for producing diverse bioactive metabolites remains largely silent under standard laboratory culture conditions. Innumerable strategies have been described to trigger their production, one of the simplest being manipulation of the growth media composition. Supplementing media with ionic(More)
BACKGROUND The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal,(More)
Aspergilli play major roles in the natural turnover of elements, especially through the decomposition of plant litter, but the end catabolism of lignin aromatic hydrocarbons remains largely unresolved. The 3-oxoadipate pathway of their degradation combines the catechol and the protocatechuate branches, each using a set of specific genes. However, annotation(More)
Ionic liquids discovery has celebrated 100 years. They consist solely of ions, one of which is typically organic and asymmetrical. Remarkable physical and chemical properties stirred their use as alternative solvents in many chemical processes. The recent demonstration of their occurrence in nature might boost their interest in biological sciences. In the(More)
UNLABELLED This study constitutes the first attempt to understand at the proteomic level the fungal response to ionic liquid stress. Ascomycota are able to grow in media supplemented with high concentrations of an ionic liquid, which, in turn, lead to major alterations in the fungal metabolic footprint. Herein, we analysed the differential accumulation of(More)
  • 1