Diego García-González

Learn More
FGF-2 and Anosmin-1 are diffusible proteins which act in cell proliferation and/or migration during CNS development. We describe their developmental expression patterns in the subventricular zone (SVZ) of the forebrain and the neuronal precursors (NPs) that migrate from this neurogenic site towards the olfactory bulb, forming the rostral migratory stream(More)
Anosmin-1, defective in Kallmann's syndrome, participates in the adhesion, migration and differentiation of different cell types in the CNS. Although not fully understood, the mechanisms of action of Anosmin-1 involve the interaction with different proteins, being the interaction with fibroblast growth factor receptor 1 (FGFR1) and the modulation of its(More)
The sense of smell plays a crucial role in the sensory world of animals. Two chemosensory systems have been traditionally thought to play-independent roles in mammalian olfaction. According to this, the main olfactory system (MOS) specializes in the detection of environmental odorants, while the vomeronasal system (VNS) senses pheromones and semiochemicals(More)
Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with(More)
Anosmin-1 is the glycoprotein encoded by the KAL1 gene and part of the extracellular matrix, which was first identified as defective in human Kallmann syndrome (KS, characterised by hypogonadotropic hypogonadism and anosmia); biochemically it is a cell adhesion protein. The meticulous biochemical dissection of the anosmin-1 domains has identified which(More)
New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated(More)
The protein anosmin-1, coded by the KAL1 gene responsible for the X-linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin-like type 3 (FnIII) domain and the N-terminal(More)
As discussed in the first part of this review, the development of the olfactory system offers a series of fascinating peculiarities that make it one of the models that has been most widely studied in order to reach an understanding of the mechanisms involved in the development of the nervous system. In the first part we reviewed the different mechanisms(More)
The physiological particularities that occur during the development of the olfactory system make it one of the most fascinating parts of the central nervous system and one of models that has been most widely studied in order to understand the mechanisms related with axonal growth and guidance towards the right targets. A variety of mechanisms are known,(More)
  • 1