Learn More
Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at(More)
The diencephalon is a central area of the vertebrate developing brain, where the thalamic nuclear complex, the pretectum and the anterior tegmental structures are generated. It has been subdivided into prosomeres, which are transversal domains defined by morphological and molecular criteria. The zona limitans intrathalamica is a central boundary in the(More)
Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms(More)
Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement(More)
Midbrain neurons synthesizing the neurotransmitter dopamine play a central role in the modulation of different brain functions and are associated with major neurological and psychiatric disorders. Despite the importance of these cells, the molecular mechanisms controlling their development are still poorly understood. The secreted glycoprotein Wnt1 is(More)
Basal tearing is crucial to maintaining ocular surface wetness. Corneal cold thermoreceptors sense small oscillations in ambient temperature and change their discharge accordingly. Deletion of the cold-transducing ion channel Transient receptor potential cation channel subfamily M member 8 (TRPM8) in mice abrogates cold responsiveness and reduces basal(More)
The vertebrate Central Nervous System (CNS) originates from the embryonic dorsal ectoderm. Differentiation of the neural epithelium from the ectoderm and the formation of the neural plate constitute the first phase of a complex process called neurulation which culminates in the formation of the neural tube, the anlage of the CNS in sauropsids and mammals(More)
Live-cell imaging of glioblastoma U373 and U87 cells transfected with actin cytoskeleton markers has been used to study there-arrangements that are associated with migration in two- and three-dimensional matrices and in brain tissue. In collagen gels and in brain slices, both cell types developed neuronal-like processes with ruffling membranes and(More)
In recent years much emphasis has been placed on investigation of the precise control of FGF signaling during brain development. Such control is achieved in part by regulatory elements that determine the domains and levels of expression of genes coding for the diverse FGF ligands via specific molecular signaling pathways. There is new knowledge on the(More)
Fibroblast growth factors (FGFs) and regulators of the FGF signalling pathway are expressed in several cell types within the cerebellum throughout its development. Although much is known about the function of this pathway during the establishment of the cerebellar territory during early embryogenesis, the role of this pathway during later developmental(More)