Learn More
Maxi-K channels consist of a pore-forming alpha subunit and a regulatory beta subunit, which confers the channel with a higher Ca(2+) sensitivity. Estradiol bound to the beta subunit and activated the Maxi-K channel (hSlo) only when both alpha and beta subunits were present. This activation was independent of the generation of intracellular signals and(More)
This paper introduces the use of wavelet analysis to follow the temporal variations in the coupling between oscillatory neural signals. Coherence, based on Fourier analysis, has been commonly used as a first approximation to track such coupling under the assumption that neural signals are stationary. Yet, stationary neural processing may be the exception(More)
The quantification of phase synchrony between brain signals is of crucial importance for the study of large-scale interactions in the brain. Current methods are based on the estimation of the stability of the phase difference between pairs of signals over a time window, within successive frequency bands. This paper introduces a new approach to study the(More)
We use a neural mass model to address some important issues in characterising functional integration among remote cortical areas using magnetoencephalography or electroencephalography (MEG or EEG). In a previous paper [Neuroimage (in press)], we showed how the coupling among cortical areas can modulate the MEG or EEG spectrum and synchronise oscillatory(More)
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is,(More)
Potassium channels in plants play a variety of important physiological roles including K(+) uptake into roots, stomatal and leaf movements, and release of K(+) into the xylem. This review summarizes current knowledge about a class of plant genes whose products are K(+) channel-forming proteins. Potassium channels of this class belong to a superfamily(More)
There is a growing interest in elucidating the role of specific patterns of neural dynamics--such as transient synchronization between distant cell assemblies--in brain functions. Magnetoencephalography (MEG)/electroencephalography (EEG) recordings consist in the spatial integration of the activity from large and multiple remotely located populations of(More)
We present here ongoing patterns of distributed brain synchronous activity that correlate with the spontaneous flow of perceptual dominance during binocular rivalry. Specific modulation of the magnetoencephalographic (MEG) response evoked during conscious perception of a frequency-tagged stimulus was evidenced throughout rivalry. Estimation of the(More)
Cognitive neuroscience investigations of self-experience have mainly focused on the mental attribution of features to the self (self-related processing). In this paper, we highlight another fundamental, yet neglected, aspect of self-experience, that of being an agent. We propose that this aspect of self-experience depends on self-specifying processes, ones(More)
Protein kinase CK2 (casein kinase 2) is a ubiquitous Ser/Thr protein kinase involved in cell proliferation. Mutation of the alpha subunit of the Xenopus laevis CK2 to change aspartic acid 156 to alanine (CK2alphaA156) resulted in an inactive enzyme. The CK2alphaA156 mutant, however, binds the regulatory subunit as measured by retention of beta on a nickel(More)