Learn More
As most afferent axons to the thalamus originate in the cerebral cortex, we assumed that the slow (< 1 Hz) cortical oscillation described in the two companion articles is reflected in reticular (RE) thalamic and thalamocortical cells. We hypothesized that the cortically generated slow rhythm would appear in the thalamus in conjunction with delta and spindle(More)
We investigated the synchronization of fast spontaneous oscillations (mainly 30-40 Hz) in anesthetized and behaving cats by means of simultaneous extra- and intracellular recordings from multiple neocortical areas. Fast Fourier transforms, auto- and cross-correlations, and spike- or wave-triggered averages were used to determine the frequency and temporal(More)
1. The oscillatory properties of the isolated reticular (RE) thalamus were modeled with the use of compartmental models of RE cells. Hodgkin-Huxley type kinetic models of ionic channels were derived from voltage- and current-clamp data from RE cells. Interactions between interconnected RE cells were simulated with the use of a kinetic model of(More)
Thalamic reticular (RE) neurons are involved in the genesis of synchronized thalamocortical oscillations, which depend in part on their complex bursting properties. We have investigated the intrinsic properties of RE cells using computational models based on morphological and electrophysiological data. Simulations of a reconstructed RE cells were compared(More)
The electroencephalogram displays various oscillation patterns during wake and sleep states, but their spatiotemporal distribution is not completely known. Local field potentials (LFPs) and multiunits were recorded simultaneously in the cerebral cortex (areas 5-7) of naturally sleeping and awake cats. Slow-wave sleep (SWS) was characterized by oscillations(More)
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS(More)
A slow oscillation (< 1 Hz) has recently been described in intracellular recordings from the neocortex and thalamus (Steriade et al., 1993c-e). The aim of the present study was to determine the phase relations between cortical and thalamic neuronal activities during the slow EEG oscillation. Intracellular recordings were performed in anesthetized cats from(More)
We explored the relative contributions of cortical and thalamic neuronal networks in the generation of electrical seizures that include spike-wave (SW) and polyspike-wave (PSW) complexes. Seizures were induced by systemic or local cortical injections of bicuculline, a gamma-aminobutyric acid-A (GABAA) antagonist, in cats under barbiturate anesthesia. Field(More)
Neurons in sensory systems respond to stimuli within their receptive fields, but the magnitude of the response depends on specific stimulus features. In the rodent whisker system, the response magnitude to the deflection of a particular whisker is, in most cells, dependent on the direction of deflection. Here we use in vivo intracellular recordings from(More)
1. The electrophysiological properties of neurones of the reticular thalamic (RE) nucleus were studied in acutely prepared cats under urethane anaesthesia. 2. Two main types of neuronal firing were recorded. At the resting membrane potential (-60 to -65 mV) tonic repetitive firing was elicited when the cell was activated synaptically or by current(More)