Didier Devaurs

Learn More
The Transition-based RRT (T-RRT) algorithm enables to solve motion planning problems involving configuration spaces over which cost functions are defined, or cost spaces for short. T-RRT has been successfully applied to diverse problems in robotics and structural biology. In this paper, we aim at enhancing T-RRT to solve ever more difficult problems(More)
'Understanding context is vital' [1] and 'context is key' [2] signal the key interest in the context detection field. One important challenge in this area is automatically detecting the user's task because once it is known it is possible to support her better. In this paper we propose an ontology-based user interaction context model (UICO) that enhances the(More)
This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also(More)
We present an individual-based predator-prey model with, for the first time, each agent behavior being modeled by a fuzzy cognitive map (FCM), allowing the evolution of the agent behavior through the epochs of the simulation. The FCM enables the agent to evaluate its environment (e.g., distance to predator or prey, distance to potential breeding partner,(More)
Sampling-based algorithms for path planning, such as the Rapidly-exploring Random Tree (RRT), have achieved great success, thanks to their ability to efficiently solve complex high-dimensional problems. However, standard versions of these algorithms cannot guarantee optimality or even high-quality for the produced paths. In recent years, variants of these(More)
Detecting the task a user is performing on her computer desktop is important for providing her with contextualized and personalized support. Some recent approaches propose to perform automatic user task detection by means of classifiers using captured user context data. In this paper we improve on that by using an ontology-based user interaction context(More)
In this demonstration we present our KnowSe framework, developed for observing, storing, analyzing and leveraging Contextual Attention Metadata, utilizing our ontology-based user interactions context model (UICO). It includes highly contextualized knowledge services for supporting learners in a personalized and adaptive way, by exploiting the learner’s user(More)
INTRODUCTION Protein-ligand interactions play key roles in various metabolic pathways, and the proteins involved in these interactions represent major targets for drug discovery. Molecular docking is widely used to predict the structure of protein-ligand complexes, and protein flexibility stands out as one of the most important and challenging issues for(More)
This paper addresses the problem of parallelizing the Rapidly-exploring Random Tree (RRT) algorithm on large-scale distributed-memory architectures, using the message passing interface. We compare three parallel versions of RRT based on classical parallelization schemes. We evaluate them on different motion-planning problems and analyze the various factors(More)
We have developed an individual-based evolving predator–prey ecosystem simulation that integrates, for the first time, a complex individual behaviour model, an evolutionary mechanism and a speciation process, at an acceptable computational cost. In this article, we analyse the species abundance patterns observed in the communities generated by our(More)