Didier Croes

Learn More
Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant(More)
An approach is presented for computing meaningful pathways in the network of small molecule metabolism comprising the chemical reactions characterized in all organisms. The metabolic network is described as a weighted graph in which all the compounds are included, but each compound is assigned a weight equal to the number of reactions in which it(More)
The analysis of a variety of data sets (transcriptome arrays, phylogenetic profiles, etc.) yields groups of functionally related genes. In order to determine their biological function, associated gene groups are often projected onto known pathways or tested for enrichment of known functions. However, these approaches are not flexible enough to deal with(More)
  • 1