Learn More
Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and(More)
A cell's decision to die is controlled by a sophisticated network whose deregulation contributes to the pathogenesis of multiple diseases including neoplastic and neurodegenerative disorders. The finding, more than a decade ago, that baker's yeast (Saccharomyces cerevisiae) can undergo apoptosis uncovered the possibility to investigate this mode of(More)
Endonuclease G (EndoG) is located in mitochondria yet translocates into the nucleus of apoptotic cells during human degenerative diseases. Nonetheless, a direct involvement of EndoG in cell-death execution remains equivocal, and the mechanism for mitochondrio-nuclear translocation is not known. Here, we show that the yeast homolog of EndoG (Nuc1p) can(More)
The activation of ceramide-generating enzymes, the blockade of ceramide degradation, or the addition of ceramide analogues can trigger apoptosis or necrosis in human cancer cells. Moreover, endogenous ceramide plays a decisive role in the killing of neoplastic cells by conventional anticancer chemotherapeutics. Here, we explored the possibility that(More)
The lysosomal endoprotease cathepsin D (CatD) is an essential player in general protein turnover and specific peptide processing. CatD-deficiency is associated with neurodegenerative diseases, whereas elevated CatD levels correlate with tumor malignancy and cancer cell survival. Here, we show that the CatD ortholog of the budding yeast Saccharomyces(More)
The phenomenon of aging is an intrinsic feature of life. Accordingly, the possibility to manipulate it has fascinated humans likely since time immemorial. Recent evidence is shaping a picture where low caloric regimes and exercise may improve healthy senescence, and several pharmacological strategies have been suggested to counteract aging. Surprisingly,(More)
alpha-Synuclein is one of the principal toxic triggers of Parkinson disease, an age-associated neurodegeneration. Using old yeast as a model of alpha-synuclein expression in post-mitotic cells, we show that alpha-synuclein toxicity depends on chronological aging and results in apoptosis as well as necrosis. Neither disruption of key components of the(More)
Necrosis was long regarded as an accidental cell death process resulting from overwhelming cellular injury such as chemical or physical disruption of the plasma membrane. Such a definition, however, proved to be inapplicable to many necrotic scenarios. The discovery that genetic manipulation of several proteins either protected or enhanced necrotic cell(More)