Learn More
a r t i c l e i n f o a b s t r a c t Voluminous geographic data have been, and continue to be, collected with modern data acquisition techniques such as global positioning systems (GPS), high-resolution remote sensing, location-aware services and surveys, and internet-based volunteered geographic information. There is an urgent need for effective and(More)
  • Diansheng Guo
  • 2009
Spatial interactions (or flows), such as population migration and disease spread, naturally form a weighted location-to-location network (graph). Such geographically embedded networks (graphs) are usually very large. For example, the county-to-county migration data in the U.S. has thousands of counties and about a million migration paths. Moreover, many(More)
The research reported here integrates computational, visual and cartographic methods to develop a geovisual analytic approach for exploring and understanding spatio-temporal and multivariate patterns. The developed methodology and tools can help analysts investigate complex patterns across multivariate, spatial and temporal dimensions via clustering,(More)
The discovery, interpretation, and presentation of multivariate spatial patterns are important for scientific understanding of complex geographic problems. This research integrates computational, visual, and cartographic methods together to detect and visualize multivariate spatial patterns. The integrated approach is able to: (1) perform multivariate(More)
The unprecedented large size and high dimensionality of existing geographic datasets make the complex patterns that potentially lurk in the data hard to ®nd. Clustering is one of the most important techniques for geographic knowledge discovery. However, existing clustering methods have two severe drawbacks for this purpose. First, spatial clustering methods(More)
  • Diansheng Guo
  • 2010
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents(More)
Landscape ecologists have increasingly turned to the use of landscape graphs in which a landscape is represented as a set of nodes (habitat patches) connected by links representing inter-patch-dispersal. This study explores the use of a graph-based regionalization method, Graph-based REgionalization with Clustering And Partitioning (GraphRECAP), to detect(More)
Unknown (and unexpected) multivariate patterns lurking in high-dimensional datasets are often very hard to find. This paper describes a human-centered exploration environment, which incorporates a coordinated suite of computational and visualization methods to explore high-dimensional data for uncovering patterns in multivariate spaces. Specifically, it(More)