Learn More
The aim of this study was to obtain molecular insight into the deactivation of recombinant urate oxidase (uricase, UOX, EC 1.7.3.3) (rUOX) from Aspergillus flavus. The enzyme is a tunnel-shaped homotetramer and has important clinical applications. By means of molecular dynamics simulations, multidimensional structural characterization and enzyme activity(More)
A two-step procedure to encapsulate a single bovine carbonic anhydrase (BCA) molecule into a spherical nanogel was proposed. BCA was reacted first with N-acryloxysuccinimide to introduce surface vinyl groups, followed by in-situ aqueous polymerization. Characterization of the nanogel by dynamic light scattering, transmission electron microscopy, and atomic(More)
A Gram-negative rod-shaped bacterium, previously shown to utilize alkanes and polycyclic aromatic hydrocarbons (PAHs), was identified as Enterobacter cloacae (GenBank accession number, GQ426323) by 16S rRNA sequence analysis and was designated as strain TU. During growing on n-hexadecane as the sole carbon source, the strain TU extracellularly released an(More)
While the effectiveness of PEGylation in enhancing the stability and potency of protein pharmaceuticals has been validated for years, the underlying mechanism remains poorly understood, particularly at the molecular level. A molecular dynamics simulation was developed using an annealing procedure that allowed an all-atom level examination of the interaction(More)
We describe an enzyme-responsive polymeric vehicle, which is of great interest in controlled drug delivery, biosensing, and other related areas. The polymer synthesized using lipase as catalyst in DMSO has a favorable molecular structure that is quickly hydrolyzed by lipase in aqueous phase, and allows a fast release of encapsulated molecules.
Glycosylation is one of the most common post-translational modifications in the biosynthesis of protein, but its effect on the protein conformational transitions underpinning folding and stabilization is poorly understood. In this study, we present a coarse-grained off-lattice 46-β barrel model protein glycosylated by glycans with different hydrophobicity(More)
The assembly of a monomer around an enzyme as the essential step in the fabrication of enzyme nanogel by in situ polymerization was illustrated by molecular dynamics simulation and evidenced by a fluorescence resonance energy transfer spectrum, using lipase/acrylamide as a model system. The subsequent polymerization generated a hydrophilic gel network which(More)
The present work showed that Candida rugosa lipase, which is inactive in anhydrous dimethyl sulfoxide (DMSO), has been granted its original catalytic activity and greatly enhanced stability when encapsulated into a polyacrylamide nanogel. The molecular simulation and structural analysis suggested that the polyacrylamide nanogel shielded the extraction of(More)
While the knowledge of protein folding in a dilute solution is now well-advanced, little is known of the influence of surrounding conditions on the folding kinetics, in particular when the protein is in a dynamically responsive environment. Here we report a new procedure to control the pathways of protein folding by using a thermally responsive polymer that(More)
A universal synthetic route for magnetic enzyme nanogels (MENGs) was proposed, based on electrostatic interaction driven assembly and in situ polymerization from the surface of magnetic nanoparticles, to avoid chemical modification of proteins and hence structural and functional deterioration.