Learn More
The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we used two-color quantum-dot tracking for visualization of the homodimerization of human erbB1 and quantification of the dimer off-rate (k(off)) on living cells. Kinetic parameters were extracted using a three-state hidden Markov model to(More)
Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope(More)
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to(More)
The unique fluorescence properties of quantum dots (QDs), particularly their large extinction coefficients and photostability, make them ideal probes for tracking proteins in live cells using real-time visualization. We have shown that QDs conjugated to epidermal growth factor act as functional ligands for their receptor, erbB1. Here, we describe protocols(More)
ErbB1 receptors situated on cellular filopodia undergo systematic retrograde transport after binding of the epidermal growth factor (EGF) and activation of the receptor tyrosine kinase. Specific inhibitors of the erbB1 receptor tyrosine kinase as well as cytochalasin D, a disruptor of the actin cytoskeleton, abolish transport but not free diffusion of the(More)
Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive, technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities(More)
Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron(More)
The ability to follow and observe single molecules as they function in live cells represents a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in three dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based(More)
We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow cytometry of cells. These methods permit the assessment of(More)
The ability of cells to detect changes in the microenvironment is important in cell signaling and responsiveness to environmental fluctuations. Our interest is in understanding how human bone marrow stromal-derived cells (MSC) and their relatives, vascular smooth muscle cells (VSMC), interact with their environment through novel receptors. We found, through(More)