Diane S. Lidke

Learn More
The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we used two-color quantum-dot tracking for visualization of the homodimerization of human erbB1 and quantification of the dimer off-rate (k(off)) on living cells. Kinetic parameters were extracted using a three-state hidden Markov model to(More)
The erbB/HER family of transmembrane receptor tyrosine kinases (RTKs) mediate cellular responses to epidermal growth factor (EGF) and related ligands. We have imaged the early stages of RTK-dependent signaling in living cells using: (i) stable expression of erbB1/2/3 fused with visible fluorescent proteins (VFPs), (ii) fluorescent quantum dots (QDs) bearing(More)
ErbB1 receptors situated on cellular filopodia undergo systematic retrograde transport after binding of the epidermal growth factor (EGF) and activation of the receptor tyrosine kinase. Specific inhibitors of the erbB1 receptor tyrosine kinase as well as cytochalasin D, a disruptor of the actin cytoskeleton, abolish transport but not free diffusion of the(More)
The actin cytoskeleton has been implicated in restricting diffusion of plasma membrane components. Here, simultaneous observations of quantum dot-labelled FcepsilonRI motion and GFP-tagged actin dynamics provide direct evidence that actin filament bundles define micron-sized domains that confine mobile receptors. Dynamic reorganization of actin structures(More)
We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow cytometry of cells. These methods permit the assessment of(More)
Crosslinking of IgE-bound FcepsilonRI triggers mast cell degranulation. Previous fluorescence recovery after photobleaching (FRAP) and phosphorescent anisotropy studies suggested that FcepsilonRI must immobilize to signal. Here, single quantum dot (QD) tracking and hyperspectral microscopy methods were used for defining the relationship between receptor(More)
Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive, technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities(More)
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to(More)
Distributions of ErbB receptors on membranes of SKBR3 breast cancer cells were mapped by immunoelectron microscopy. The most abundant receptor, ErbB2, is phosphorylated, clustered and active. Kinase inhibitors ablate ErbB2 phosphorylation without dispersing clusters. Modest co-clustering of ErbB2 and EGFR, even after EGF treatment, suggests that both are(More)
Anisotropy imaging can be used to image resonance energy transfer between pairs of identical fluorophores and, thus, constitutes a powerful tool for monitoring protein homo-association in living single cells. The requirement for only a single fluorophore significantly simplifies biological preparation and interpretation. We use quantitative methods for the(More)