Diane S. Lidke

Learn More
rbB1 receptors situated on cellular filopodia undergo systematic retrograde transport after binding of the epidermal growth factor (EGF) and activation of the receptor tyrosine kinase. Specific inhibitors of the erbB1 receptor tyrosine kinase as well as cytochalasin D, a disruptor of the actin cytoskeleton, abolish transport but not free diffusion of the(More)
The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we used two-color quantum-dot tracking for visualization of the homodimerization of human erbB1 and quantification of the dimer off-rate (k(off)) on living cells. Kinetic parameters were extracted using a three-state hidden Markov model to(More)
In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen(More)
Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope(More)
Anisotropy imaging can be used to image resonance energy transfer between pairs of identical fluorophores and, thus, constitutes a powerful tool for monitoring protein homo-association in living single cells. The requirement for only a single fluorophore significantly simplifies biological preparation and interpretation. We use quantitative methods for the(More)
  • Troy C. Lund, Amanda J. Kobs, Ashley Kramer, Mick Nyquist, Marcos T. Kuroki, John Osborn +4 others
  • 2013
The ability of cells to detect changes in the microenvironment is important in cell signaling and responsiveness to environmental fluctuations. Our interest is in understanding how human bone marrow stromal-derived cells (MSC) and their relatives, vascular smooth muscle cells (VSMC), interact with their environment through novel receptors. We found, through(More)
Signal transduction is regulated by protein-protein interactions. In the case of the ErbB family of receptor tyrosine kinases (RTKs), the precise nature of these interactions remains a topic of debate. In this review, we describe state-of-the-art imaging techniques that are providing new details into receptor dynamics, clustering, and interactions. We(More)
To investigate why responses of mast cells to antigen-induced IgE receptor (FcεRI) aggregation depend nonlinearly on antigen dose, we characterized a new artificial ligand, DF3, through complementary modeling and experimentation. This ligand is a stable trimer of peptides derived from bacteriophage T4 fibritin, each conjugated to a hapten (DNP). We found(More)
Immune cells display multiple cell surface receptors that integrate signals for survival, proliferation, migration, and degranulation. Here, immunogold labeling is used to map the plasma membrane distributions of two separate receptors, the N-formyl peptide receptor (FPR) and the high-affinity IgE receptor (FepsilonRI). We show that the FPR forms signaling(More)
We have used luminescence resonance energy transfer between regulatory light chains (RLC) to detect structural changes within the dimeric myosin molecule in contracting muscle fibers. Fully functional scallop muscle fibers were prepared such that each myosin molecule contained a terbium-labeled (luminescent donor) RLC on one head and a rhodamine-labeled(More)