Diane G. Schattenberg

Learn More
The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high(More)
Protein kinase C betaII (PKC betaII) has been implicated in proliferation of the intestinal epithelium. To investigate PKC betaII function in vivo, we generated transgenic mice that overexpress PKC betaII in the intestinal epithelium. Transgenic PKC betaII mice exhibit hyperproliferation of the colonic epithelium and an increased susceptibility to(More)
Peroxidases may be important in the mechanism of toxicity of a number of compounds including benzene, a chemical that has been associated with bone marrow toxicity and leukemia after chronic exposure. The major peroxidase in bone marrow is myeloperoxidase (MPO), which has been previously thought to be expressed at the promyelocytic stage of differentiation.(More)
The reverse transcription-polymerase chain reaction was used to examine alternative splicing at each of the three fibronectin exons known to undergo alternative splicing, i.e. extra domain A (ED-A), extra domain B (ED-B), and type III connecting sequence (IIICS). Ratios of fibronectin mRNAs with or without a given exon were determined in several rat tissues(More)
Benzene is an important industrial chemical known to produce hematotoxicity in mice and humans. Hydroquinone, a major metabolite of benzene, inhibits conversion of the precursor form of IL1 alpha (pre-IL1 alpha) to IL1 alpha in murine bone marrow-derived macrophages in vitro, and a similar effect can be demonstrated in vivo after treatment of mice with(More)
  • 1