Diane F. Jelinek

Learn More
Smaller-scale evaluations suggest that common genetic variation in candidate genes related to immune function may predispose to the development of non-Hodgkin lymphoma (NHL). We report an analysis of variants within genes associated with immunity and inflammation and risk of NHL using a panel of 9412 single-nucleotide polymorphisms (SNPs) from 1253 genes in(More)
We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G,(More)
Macrophage inflammatory protein-1 alpha (MIP-1 alpha) gene expression is abnormally regulated in multiple myeloma (MM) owing to imbalanced expression of the acute myeloid leukemia-1A (AML-1A) and AML-1B transcription factors. We hypothesized that the increased expression ratios of AML-1A to AML-1B also induced abnormal expression of other hematopoietic and(More)
BACKGROUND Monoclonal gammopathy of undetermined significance (MGUS) is defined by expression of heavy-chain immunoglobulin (IgH) and is the precursor lesion for 80% of cases of multiple myeloma. The remaining 20% are characterised by absence of IgH expression; we aimed to assess prevalence of a corresponding precursor entity, light-chain MGUS. METHODS We(More)
Multiple myeloma (MM) is a late-stage B-cell cancer with an unknown etiology. Activating mutations of the N-ras and K-ras oncogenes occur with a high frequency in myeloma and, therefore, may play a role in the pathogenesis of the disease. To study the role of N-ras-activating mutations in the regulation of myeloma tumor growth, we introduced a(More)
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells within the bone marrow. There is a growing literature that tumor cells release biologically active microvesicles (MVs) that modify both local and distant microenvironments. In this study, our goals were to determine if MM cells release MVs, and if so, begin to(More)
The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also(More)
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow (BM). MM is viewed as a clonal disorder due to lack of verified intraclonal sequence diversity in the immunoglobulin heavy chain variable region gene (IGHV). However, this conclusion is based on analysis of a very limited number of IGHV subclones(More)
Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that(More)