Learn More
Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state(More)
We present first-principles calculations of the optical response of monolayer molybdenum disulfide employing the GW-Bethe-Salpeter equation (GW-BSE) approach including self-energy, excitonic, and electron-phonon effects. We show that monolayer MoS2 possesses a large and diverse number of strongly bound excitonic states with novel k-space characteristics(More)
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as a new platform for exploring 2D semiconductor physics. Reduced screening in two dimensions results in markedly enhanced electron-electron interactions, which have been predicted to generate giant bandgap renormalization and excitonic effects. Here we present a rigorous experimental(More)
Van der Waals coupling is emerging as a powerful method to engineer physical properties of atomically thin two-dimensional materials. In coupled graphene-graphene and graphene-boron nitride layers, interesting physical phenomena ranging from Fermi velocity renormalization to Hofstadter's butterfly pattern have been demonstrated. Atomically thin transition(More)
Exciton dispersion as a function of center-of-mass momentum Q is essential to the understanding of exciton dynamics. We use the ab initio GW-Bethe-Salpeter equation method to calculate the dispersion of excitons in monolayer MoS(2) and find a nonanalytic lightlike dispersion. This behavior arises from an unusual |Q|-term in both the intra- and intervalley(More)
Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and(More)
Anisotropy describes the directional dependence of a material's properties such as transport and optical response. In conventional bulk materials, anisotropy is intrinsically related to the crystal structure and thus not tunable by the gating techniques used in modern electronics. Here we show that, in bilayer black phosphorus with an interlayer twist angle(More)
Few-layer black phosphorus has recently emerged as a promising 2D semiconductor, notable for its widely tunable bandgap, highly anisotropic properties, and theoretically predicted large exciton binding energies. To avoid degradation, it has become common practice to encapsulate black phosphorus devices. It is generally assumed that this encapsulation does(More)
  • Likai Li, Jonghwan Kim, +14 authors Feng Wang
  • 2017
Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical(More)
  • 1