Learn More
BACKGROUND The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon(More)
Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination(More)
We investigated the usefulness of YFP-H transgenic mice [Neuron 28 (2000) 41] which express yellow fluorescent protein (YFP) in a restricted subset of neurons to study Wallerian degeneration in the PNS. Quantification of YFP positive axons and myelin basic protein (MBP) immunocytochemistry revealed that YFP was randomly distributed to approximately 3% of(More)
Axonal dystrophy is the hallmark of axon pathology in many neurodegenerative disorders of the CNS, including Alzheimer's disease, Parkinson's disease and stroke. Axons can also form larger swellings, or spheroids, as in multiple sclerosis and traumatic brain injury. Some spheroids are terminal endbulbs of axon stumps, but swellings may also occur on(More)
The slow Wallerian degeneration phenotype, Wld(S), which delays Wallerian degeneration and axon pathology for several weeks, has so far been studied only in mice. A rat model would have several advantages. First, rats model some human disorders better than mice. Second, the larger body size of rats facilitates more complex surgical manipulations. Third,(More)
Proteasome inhibitors such as lactacystin were first isolated when assaying their ability to stimulate neurite outgrowth in neuronal-like cell lines; however, their effect on neurites in primary culture has been largely neglected. We report here that lactacystin causes immediate arrest of nerve growth factor (NGF)-stimulated neurite outgrowth in sympathetic(More)
Exosuits represent a new approach for applying assistive forces to an individual, using soft textiles to interface to the wearer and transmit forces through specified load paths. In this paper we present a body-worn, multi-joint soft exosuit that assists both ankle plantar flexion and hip flexion through a multiarticular load path, and hip extension through(More)
NAD(+) synthesizing enzyme NMNAT1 constitutes most of the sequence of neuroprotective protein Wld(S), which delays axon degeneration by 10-fold. NMNAT1 activity is necessary but not sufficient for Wld(S) neuroprotection in mice and 70 amino acids at the N-terminus of Wld(S), derived from polyubiquitination factor Ube4b, enhance axon protection by NMNAT1.(More)
S targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld S lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD ؉ synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more(More)
  • 1