Diana Stralberg

Dennis Jongsomjit3
John C. Callaway2
3Dennis Jongsomjit
2John C. Callaway
Learn More
  • Diana Stralberg, Dennis Jongsomjit, Christine A. Howell, Mark A. Snyder, John D. Alexander, John A. Wiens +1 other
  • 2009
By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based(More)
Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant(More)
BACKGROUND Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities. METHODOLOGY Building upon established models, we(More)
Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the(More)
Although the effects of climate change on species distributions have received considerable attention, land-use change continues to threaten wildlife by contributing to habitat loss and degradation. We compared projected spatial impacts of climate change and housing development across a range of housing densities on California’s birds to evaluate the(More)
  • 1