Diana P. Vargas

Learn More
A potential strategy to combat obesity and its associated complications involves modifying gene expression in adipose cells to reduce lipid accumulation. The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ) is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic(More)
Mesenchymal stem cells are a diverse population of cells with a wide range of potential therapeutic applications. In particular, cells from adipose tissue have the distinction of being easily accessible and contain a lot of stem cells. ADMSCs can be induced to mature adipocyte and activate the energy expenditure upon treatment with total PPARγ agonists.(More)
The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are(More)
All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat(More)
Activated carbon honeycomb-monoliths with different textural properties were prepared by chemical activation of African palm shells with H(3)PO(4), ZnCl(2) and CaCl(2) aqueous solutions of various concentrations. The adsorbents obtained were characterized by N(2) adsorption at 77 K, and their carbon dioxide adsorption capacities were measured at 273 K and 1(More)
  • 1