Learn More
The reactivities of glutathione, cysteine, cysteamine, penicillamine, N-acetylcysteine, dithiothreitol and captopril with superoxide generated from xanthine oxidase and hypoxanthine, and with reagent hydrogen peroxide, have been investigated. Rates of thiol loss on adding hydrogen peroxide, and superoxide-dependent thiol loss and oxygen uptake were(More)
In this study, it is shown that considerable evidence for the possible pathway by which dopamine o-quinone, o-quinone and aminochrome can be activated metabolically by NADPH cytochrome P450 reductase to high reactive semiquinones. These findings were discussed from a mechanistic standpoint as well as in terms of potential physiological implications of(More)
In the last ten years, there has been an important increase in interest in quercetin action as a unique antioxidant, but its putative role in numerous prooxidant effects is also being continually updated. The mechanism underlying this undesirable ability seems to involve its metabolic oxidoreductive activation. Based on the structural properties of(More)
Superoxide, generated by a xanthine oxidase/hypoxanthine system, reacts with reduced glutathione (GSH) to cause an increase in oxygen consumption and oxidized glutathione (GSSG) formation, both of which are fully inhibited by superoxide dismutase. In this study we have shown that little, if any, of the additional oxygen consumed is converted to hydrogen(More)
 This overview summarizes recent findings on the role of tyrosyl radical (TyrO•) in the multitudinous neurochemical systems of brain, and theorizes on the putative role of TyrO• in neurological disorders [Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS)]. TyrO• and tyrosine per se can interact with reactive oxygen(More)
Enzymatically generated tyrosyl radicals are effectively scavenged by reduced glutathione (GSH), thereby generating glutathione thiyl radicals and superoxide radicals, subsequently. Here, we have used horseradish peroxidase to generate tyrosyl radicals and investigated the fate of the superoxide radicals. At low GSH concentrations (with a maximum effect at(More)
A stable nitroxide radical named Metexyl (4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl) was synthesized and its antioxidant and antitumor properties were investigated and compared with these of another nitroxide derivatives previously designed in our laboratories. Three experimental models were used: xanthine/xanthine oxidase system, pulse radiolysis and(More)
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed under physiological conditions in the human body and are removed by cellular antioxidant defense systems. During oxidative stress their increased formation leads to tissue damage and cell death. This process may be especially important in the central nervous system (CNS) which is(More)
The reactions of native lactoperoxidase and its compound II with two substituted catechols have been investigated by ESR spin stabilization and spin trapping and by rapid scan and conventional spectrophotometric techniques. The catechols are Dopa methyl ester (dihydroxyphenylalanine methyl ester) and 6-hydroxy-Dopa (trihydroxyphenylalanine). o-Semiquinone(More)