Diana Metodiewa

Learn More
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed under physiological conditions in the human body and are removed by cellular antioxidant defense system. During oxidative stress their increased formation leads to tissue damage and cell death. This process may be especially important in the central nervous system (CNS) which is(More)
We present for discussion a possible molecular mechanism explaining the formation of reactive oxygen species involved in the neurodegenerative process of dopaminergic system in Parkinson's disease. This new hypothesis involves one-electron reduction of aminochrome to o-semiquinone radical, which seems to be the reaction responsible for neurodegenerative(More)
The endogenous dopamine-derived neurotoxin salsolinol was found to decrease survival in the dopaminergic neuronal cell line RCSN-3, derived from adult rat substantia nigra in a concentration-dependent manner (208 microM salsolinol induced a 50% survival decrease). Incubation of RCSN-3 cells with 100 micro;M dicoumarol and salsolinol significantly decreased(More)
In our search for novel, low-toxic, cell-penetrable and neuroprotective antioxidants, we have designed a number of novel N-propargylamine derivatives of nitroxyl, named "JSAKs". The reactivity and antioxidative potency of two selected JSAKs and their parent nitroxyl against reactive oxygen species (ROS) were examined in vitro, in a cell-free(More)
  • 1