Diana L. Ramirez-Bergeron

Learn More
Decreased oxygen (O2) levels activate hypoxia-inducible factor (HIF-1) to induce genes involved in glycolysis, glucose transport, erythropoiesis, and angiogenesis. Mutations in various HIF-1 subunits have contributed to our understanding of the role hypoxia plays during early embryonic development in general and the cardiovascular system in particular. We(More)
Adaptive responses to low oxygen (O(2)) tension (hypoxia) are mediated by the heterodimeric transcription factor hypoxia inducible factor (HIF). When stabilized by hypoxia, bHLH-PAS alpha- and beta- (HIF-1beta or ARNT) HIF complex regulate the expression of multiple genes, including vascular endothelial growth factor (VEGF). To investigate the mechanism(s)(More)
PU.1(+/-)Spi-B(-/-) mice exhibit reduced numbers of immature and mature B lymphocytes, which exhibit severe defects in response to BCR-mediated stimulation and poor survival. We found that expression of c-rel, a member of the Rel/NF-kappa B family, is dramatically reduced in PU.1(+/-)Spi-B(-/-) splenic B cells. Analysis of the murine c-rel promoter(More)
Mature macrophages, neutrophils and lymphoid cells do not develop in PU.1(-/-) mice. In contrast, mice lacking the highly related protein Spi-B generate all hematopoietic lineages but display a B-cell receptor signaling defect. These distinct phenotypes could result from functional differences between PU.1 and Spi-B or their unique temporal and(More)
Hypoxia inducible factors (HIFs) regulate adaptive responses to changes in oxygen (O(2)) tension during embryogenesis, tissue ischemia, and tumorigenesis. Because HIF-deficient embryos exhibit a number of developmental defects, the precise role of HIF in early vascular morphogenesis has been uncertain. Using para-aortic splanchnopleural (P-Sp) explant(More)
Regulation of endothelial cell biology by the Notch signaling pathway (Notch) is essential to vascular development, homeostasis, and sprouting angiogenesis. Although Notch determines cell fate and differentiation in a wide variety of cells, the molecular basis of upstream regulation of Notch remains poorly understood. Our group and others have implicated(More)
Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem(More)
Hypoxia Inducible Factor (HIF), consisting of HIF1alpha and ARNT (HIF1beta) subunits, activates multiple genes in response to oxygen (O(2)) deprivation. Arnt(-/-) mice exhibit substantial defects in blood cell and vessel development. We demonstrate that hypoxia accelerates the expression of Brachyury (a mesoderm-specific transcription factor), BMP4 (a(More)
Hypoxia inducible factor (HIF) is a master heterodimeric transcriptional regulator of oxygen (O2) homeostasis critical to proper angiogenic responses. Due to the distinctive coexpression of HIF-1α and HIF-2α subunits in endothelial cells, our goal was to examine the genetic elimination of HIF transcriptional activity in response to physiological hypoxic(More)