Diana L. Cichewicz

Learn More
Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects. Thus, a search for a better analgesic strategy(More)
We have previously reported that intracerebroventricular or intrathecal administration of inactive doses of delta9-tetrahydrocannabinol (THC) greatly enhance the antinociceptive potency of morphine in the mouse tail-flick test. Experiments were conducted to test the hypothesis that morphine's potency would be enhanced in mice receiving THC and morphine by(More)
The antinociceptive effects of various mu opioids given p.o. alone and in combination with Delta-9-tetrahydrocannabinol (Delta9-THC) were evaluated using the tail-flick test. Morphine preceded by Delta9-THC treatment (20 mg/kg) was significantly more potent than morphine alone, with an ED50 shift from 28.8 to 13.1 mg/kg. Codeine showed the greatest shift in(More)
The analgesic effects of opioids, such as morphine and codeine, in mice are enhanced by oral administration of the cannabinoid delta(9)-tetrahydrocannabinol (delta(9)-THC). However, isobolographic analysis has never been done to confirm a synergy between delta(9)-THC and morphine or codeine via oral routes of administration. To determine the nature of the(More)
The analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and(More)
Previous studies have demonstrated a functional interaction between cannabinoid and opioid systems in the development and expression of morphine tolerance and dependence. In these experiments, we examined the effect of a low oral dose of Delta 9-tetrahydrocannabinol (Delta 9-THC) on the development of oral morphine tolerance and the expression of(More)
Recent studies in our laboratory have shown that in mice, low doses of morphine in combination with Delta(9)-tetrahydrocannabinol (Delta(9)-THC) have a similar antinociceptive effect to high doses of morphine alone. After short-term administration of this combination, there is no behavioral tolerance to the opioid. Previous binding studies and Western(More)
Recent studies in our laboratory have shown that in mice, low doses of morphine in combination with D-tetrahydrocannabinol (D-THC) have a similar antinociceptive effect to high doses of morphine alone. After short-term administration of this combination, there is no behavioral tolerance to the opioid. Previous binding studies and Western analyses following(More)
Previous studies have demonstrated that delta9-tetrahydrocannabinol (THC) enhances the antinociceptive potency of many opioids administered by a variety of different routes of administration. We hypothesized that THC would enhance fentanyl or buprenorphine analgesia via the transdermal route of administration. THC was first demonstrated to enhance opioid(More)
Polyarthritis induced by inoculation with complete Freund's adjuvant alters opioid peptides, but does not affect opioid receptor binding. This study was conducted to measure mu and delta opioid receptor-stimulated G-protein activity in brain and spinal cord of rats 19 days after injection of complete Freund's adjuvant or vehicle. Mu and delta(More)