Learn More
BACKGROUND Most proteins interact with only a few other proteins while a small number of proteins (hubs) have many interaction partners. Hub proteins and non-hub proteins differ in several respects; however, understanding is not complete about what properties characterize the hubs and set them apart from proteins of low connectivity. Therefore, we have(More)
Comparative studies of the proteomes from different organisms have provided valuable information about protein domain distribution in the kingdoms of life. Earlier studies have been limited by the fact that only about 50% of the proteomes could be matched to a domain. Here, we have extended these studies by including less well-defined domain definitions,(More)
Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem(More)
The high retention of duplicate genes in the genome of Paramecium tetraurelia has led to the hypothesis that most of the retained genes have persisted because of constraints due to gene dosage. This and other possible mechanisms are discussed in the light of expectations from population genetics and systems biology.
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hub proteins properties <p>An analysis of hubs (proteins with many interactors) and non-hubs in the <it>S. cerevisiae </it>protein interaction network shows that hub proteins are enriched with multiple and repeated domains.</p> Abstract(More)
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural(More)
Autoantibody formation is essential for the development of certain autoimmune diseases like rheumatoid arthritis (RA). Anti-type II collagen (CII) antibodies are found in RA patients; they interact with cartilage in vivo and are often highly pathogenic in the mouse. Autoreactivity to CII is directed to multiple epitopes and conserved between mice and(More)
Proteins evolve through point mutations as well as by insertions and deletions (indels). During the last decade it has become apparent that protein regions that do not fold into three-dimensional structures, i.e. intrinsically disordered regions, are quite common. Here, we have studied the relationship between protein disorder and indels using HMM-HMM(More)
The DA rat strain is particularly susceptible to the induction of a number of chronic inflammatory diseases, such as models for rheumatoid arthritis and multiple sclerosis. Here we sequenced the genomes of two DA sub-strains and two disease resistant strains, E3 and PVG, previously used together with DA strains in genetically segregating crosses. The data(More)
Genomic characterization of pediatric acute lymphoblastic leukemia (ALL) has identified distinct patterns of genes and pathways altered in patients with well-defined genetic aberrations. To extend the spectrum of known somatic variants in ALL, we performed whole genome and transcriptome sequencing of three B-cell precursor patients, of which one carried the(More)