Learn More
Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator(More)
Hepatocellular carcinoma (HCC) is one of the most aggressive carcinomas. Limited therapeutic options, mainly due to a fragmented genetic understanding of HCC, and major HCC resistance to conventional chemotherapy are the key reasons for a poor prognosis. Thus, new effective treatments are urgent and gene therapy may be a novel option. Signal transducer and(More)
RNA interference (RNAi) has been used for cancer gene therapy in recent years. However, the application of RNAi is hindered in the absence of safe and efficient gene delivery. In this article, a novel vehicle of graphene oxide functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) was successfully synthetized and then used to deliver(More)
The E6 protein of the oncogenic HPV-16 functions by interfering with the normal cell cycle control mechanisms, particularly those controlled by p53. In this study, we developed a dual expression plasmid that coexpressed-E6-specific siRNA and wild type p53, and to evaluate its effects on cervical cancer growth. We found that simultaneous expression of(More)
To investigate the therapeutic utility of an attenuated bacterium carrying a plasmid that co-expresses Endostatin, an inhibitor of tumor neovasculogenesis, and a shRNA that targets Stat3 to suppress prostate cancer growth. Plasmid pEndo-Si-Stat3 was constructed and introduced into an attenuated strain of Salmonella enterica serovar typhimurium. The(More)
In this paper, TiO2 nanoparticles (NPs) with different crystallinity served as SERS-active substrates for SERS detection of ciprofloxacin (CIP) drug molecules for the first time. CIP is close to the surface of the TiO2 substrate through the carboxyl group. The mutual SERS enhancement behaviors between CIP molecules and TiO2 NPs were discovered, which are(More)
At present, fluorescence spectroscopy, ultraviolet spectroscopy and infrared spectroscopy are usually used to detect drug molecules, however the information about using Raman spectroscopy to detect drug molecules is very few. In this work normal Raman spectroscopy and surface-enhanced Raman spectroscopy were utilized to study benzylpenicillin sodium (NaBP).(More)
Microbial fuel cell (MFC) is considered as a promising green energy source and energy-saving pollutants treatment technology as it integrates pollutant biodegradation with energy extraction. In this work, a facile approach to enhance endogenous biosurfactant production was developed to improve the electron transfer rate and power output of MFC. By(More)
Circulating tumor cells (CTCs) are important markers of metastatic cancer. The isolation and detection of CTCs from peripheral blood provides valuable information for cancer diagnosis and precision medicine. However, cost-efficient targeted separation of CTCs of different origins with clinically significant specificity and efficiency remains a major(More)
In this study, highly-dispersed TiO2 nanoparticles (NPs) with abundant active sites were synthesized by a simple sol-hydrothermal method with the assistance of surfactant polyethylene glycol (PEG) which served as an effective SERS-active substrate for the first time. The observed considerable SERS enhancement of 4-mercaptobenzoic acid (4-MBA) probe(More)