Di Luo

Dan Shu3
Zhong-Tao Ding2
Juan Zhong2
3Dan Shu
2Zhong-Tao Ding
Learn More
OBJECTIVE MicroRNA is a type of small non-coding RNAs, which usually has a stem-loop structure. As an important stage of microRNA, the pre-microRNA is transported from nuclear to cytoplasm by exportin5 and finally cleaved into mature microRNA. Structure-sequence features and minimum of free energy of secondary structure have been used for predicting(More)
BACKGROUND Aromatic rice is popular worldwide because of its characteristic fragrance. Genetic studies and physical fine mapping reveal that a candidate gene (fgr/OsBADH2) homologous to betaine aldehyde dehydrogenase is responsible for aroma metabolism in fragrant rice varieties, but the direct evidence demonstrating the functions of OsBADH2 is lacking. To(More)
To introduce DNA into Streptomyces noursei xinao-4, which produces xinaomycins, we explored an intergeneric conjugal transfer system. High efficiency of conjugation (8×10(-3) exconjugants per recipient) was obtained when spores of S. noursei xinao-4 were heat-shocked at 50 °C for 10 min, mixed with Escherichia coli ET12567 (pUZ8002/pSET152) in the ratio of(More)
Computer modeling of very large biomolecular systems, such as long DNA polyelectrolytes or protein-DNA complex-like chromatin cannot reach all-atom resolution in a foreseeable future and this necessitates the development of coarse-grained (CG) approximations. DNA is both highly charged and mechanically rigid semi-flexible polymer and adequate DNA modeling(More)
The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated(More)
In order to efficiently introduce DNA into B. subtilis ZK, which produces iturin A at a high level, we optimized seven electroporation conditions and explored an efficient electroporation method. Using the optimal conditions, the electroporation efficiency was improved to 1.03 × 10(70 transformants/μg of DNA, an approximately 10,000-fold increase in(More)
  • 1