Dhaval D. Kulkarni

Learn More
The introduction of graphene-based nanomaterials has prompted the development of flexible nanocomposites for emerging applications in need of superior mechanical, thermal, electrical, optical, and chemical performance. These nanocomposites exhibit outstanding structural performance and multifunctional properties by synergistically combining the(More)
The silk road: By employing silk fibroin as a binder between graphene oxide films and aluminum foil for a facile, highly localized reduction process, conductive paper is reinvented. The flexible, robust biographene papers have high toughness and electrical conductivity. This electrochemical written-in approach is readily applicable for the fabrication of(More)
Nanocomposite materials in forms of membranes, fi lms, and coatings are gaining surging interests in structural and functional applications, because they are more effi cient in loading transfer than conventional composites and can substantially eliminate catastrophic failure caused by poor loading transfer between components. To enhance the mechanical(More)
Owing to its remarkable electrical, thermal, and mechanical properties, graphene, an atomic layer of carbon, is considered to be an excellent two-dimensional filler for polymer nanocomposites with outstanding mechanical strength along with the potential for excellent electrical and thermal properties. One of the critical limitations with conventional(More)
Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional(More)
Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition(More)
We studied the thermally induced phase transformations of electron-beam-induced deposited (EBID) amorphous carbon nanostructures by correlating the changes in its morphology with internal microstructure by using combined atomic force microscopy (AFM) and high resolution confocal Raman microscopy. These carbon deposits can be used to create heterogeneous(More)
We report continuous monitoring of heterogeneously distributed oxygenated functionalities on the entire surface of the individual graphene oxide flake during the chemical reduction process. The charge densities over the surface with mixed oxidized and graphitic domains were observed for the same flake after a step-by-step chemical reduction process using(More)
[∗] Dr. B. Hu , Y. Ding , D. Kulkarni , Y. Shen , Prof. V. V. Tsukruk , Prof. Z. L. Wang School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245 (USA) E-mail: zhong.wang@mse.gatech.edu Dr. B. Hu , Prof. W. Chen State Key Laboratory of Advanced Technology for Materials Synthesis and Processing School of Materials(More)
A simple and widely applicable approach to assemble long-range two-dimensional mobile arrays of functionalized nickel nanorods with tunable and "highly open" lattice structures is presented. The magnetic assembly of uniformly oriented nanorods in triangular lattices was achieved by a phase separation of the surface confined yet mobile vertical nanorods(More)