Dharmaraj Raghavan

Learn More
Atmospheric samples of precipitation and ambient air were collected at a single site in Washington, DC, for 7 months (for ambient air samples) and 1 year (for wet deposition samples) and analyzed for arsenic, cadmium, chromium and lead. The ranges of heavy metal concentrations for 6-day wet deposition samples collected over the 1-year period were 0.20-1.3(More)
Polymer coatings often contain degradation-susceptible regions, and corrosion of the metallic substrate can occur directly underneath these regions. In this paper, the microstructure of model coating materials is investigated using atomic force microscopy (AFM). Specifically, AFM is used to study heterogeneity in thin film blends of polystyrene (PS) and(More)
The objective of this study is to synthesize and characterize collagen grafted poly(3-hydroxylbutyrate-co-3-hydroxylvalerate) (PHBV) film for loading of BSA capped silver (Ag/BSA) nanoparticles. Thermal radical copolymerization and aminolysis methods were used to functionalize macroporous PHBV, followed by collagen grafting so as to formulate(More)
The primary objective of this study was to elucidate the structure of protein conjugated silver nanoparticles prepared by chemical reduction of AgNO(3) and bovine serum albumin (BSA) mixture. The role of BSA in the formation of Ag/BSA nanoparticles was established by UV-Vis Spectroscopy. The association of silver with BSA in Ag/BSA nanoparticles was studied(More)
We investigate the dewetting of aqueous, evaporating polymer [poly(acrylic acid)] solutions cast on glassy hydrophobic (polystyrene) substrates. As in ordinary dewetting, the evaporating films initially break up through the nucleation of holes that perforate the film, but the rapidly growing holes become unstable and form nonequilibrium patterns resembling(More)
The kinetics of nanoparticle (NP) adsorption on a model biological interface (collagen) is measured in microfluidic channels using surface plasmon resonance (SPR) imaging over a range of CdSe/ZnS quantum dot concentrations to investigate the underlying binding process. Spherical CdSe/ZnS core-shell NP, derivatized with 3-mercaptopropionic acid (3-MPA), were(More)
Structure-interaction-mechanical property correlation in bionanocomposite thin films is an area of growing interest for research and application areas from barrier to molecular transport to UV blocking layers for polymer solar cells to dielectric properties modification. Here we study flow coated ultrathin to thin films (70-150 nm) of clay bionanocomposites(More)
Thin polymeric films are increasingly being utilized in diverse technological applications, and it is crucial to have a reliable method to characterize the stability of these films against dewetting. The parameter space that influences the dewetting of thin polymer films is wide (molecular mass, temperature, film thickness, substrate interaction) and a(More)
We investigate the utility of Langmuir adsorption measurements for characterizing nanoparticle-substrate interactions. Spherical CdSe/ZnS core-shell nanoparticles were chosen as representative particles because of their widespread use in biological labeling measurements and their relatively monodisperse dimensions. In particular, the quantum dots were(More)
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid(More)