Learn More
Minor component analysis (MCA) is a powerful statistical tool for signal processing and data analysis. Convergence of MCA learning algorithms is an important issue in practical applications. In this paper, we will propose a simple MCA learning algorithm to extract minor component from input signals. Dynamics of the proposed MCA learning algorithm are(More)
Principal component analysis (PCA) and minor component analysis (MCA) are two important statistical tools which have many applications in the fields of signal processing and data analysis. PCA and MCA neural networks (NNs) can be used to online extract principal component and minor component from input data. It is interesting to develop generalized learning(More)
This paper presents a patchwork-based watermarking method for stereo audio signals, which exploits the similarity of the two sound channels of stereo signals. Given a segment of stereo signal, we first compute the discrete Fourier transforms (DFTs) of the two sound channels, which yields two sets of DFT coefficients. The DFT coefficients corresponding to(More)
This work proposes a novel dual-channel time-spread echo method for audio watermarking, aiming to improve robustness and perceptual quality. At the embedding stage, the host audio signal is divided into two subsignals, which are considered to be signals obtained from two virtual audio channels. The watermarks are implanted into the two subsignals(More)