Learn More
Minor component analysis (MCA) is a powerful statistical tool for signal processing and data analysis. Convergence of MCA learning algorithms is an important issue in practical applications. In this paper, we will propose a simple MCA learning algorithm to extract minor component from input signals. Dynamics of the proposed MCA learning algorithm are(More)
Recently, Aissa-El-Bey et al. have proposed two subspace-based methods for underdetermined blind source separation (UBSS) in time-frequency (TF) domain. These methods allow multiple active sources at TF points so long as the number of active sources at any TF point is strictly less than the number of sensors, and the column vectors of the mixing matrix are(More)
This work proposes a novel dual-channel time-spread echo method for audio watermarking, aiming to improve robustness and perceptual quality. At the embedding stage, the host audio signal is divided into two subsignals, which are considered to be signals obtained from two virtual audio channels. The watermarks are implanted into the two subsignals(More)
Principal component analysis (PCA) and minor component analysis (MCA) are two important statistical tools which have many applications in the fields of signal processing and data analysis. PCA and MCA neural networks (NNs) can be used to online extract principal component and minor component from input data. It is interesting to develop generalized learning(More)
In this paper, we address the problem of blind separation of spatially correlated signals, which is encountered in some emerging applications, e.g., distributed wireless sensor networks and wireless surveillance systems. We preprocess the source signals in transmitters prior to transmission. Specifically, the source signals are first filtered by a set of(More)