Devrim Kilinc

Learn More
Diffuse axonal injury (DAI), a major component of traumatic brain injury, is characterized by a sequence of neurochemical reactions initiated at the time of trauma and resulting in axonal degeneration and cell death. Calcium influx through mechanically induced axolemmal pores and subsequent activation of calpains are thought to be responsible for the(More)
Diffuse axonal injury (DAI), a major component of traumatic brain injury, is a manifestation of microstructural cellular trauma and various ensuing neurochemical reactions that leads to secondary neuronal death. DAI is suggested to result from the initial increase in the membrane permeability caused by the mechanical forces acting on the axons. Permeability(More)
Degeneration of central axons may occur following injury or due to various diseases and it involves complex molecular mechanisms that need to be elucidated. Existing in vitro axotomy models are difficult to perform, and they provide limited information on the localization of events along the axon. We present here a novel experimental model system, based on(More)
Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a(More)
In chronic degenerative syndromes, neuronal death occurs over long periods, during which cells progressively lose their axons and, ultimately, their cell bodies. Although apoptosis is recognized as a key event in neuronal death, the molecular mechanisms involved in CNS axons degeneration are poorly understood. Due to the highly polarized phenotypes of CNS(More)
Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in cell-cell interactions during nervous system development and function. The Aplysia CAM (apCAM), an invertebrate IgCAM, shares structural and functional similarities with vertebrate NCAM and therefore has been considered as the Aplysia homolog of NCAM. Despite these(More)
The primary goal of this work is to establish a robust, repeatable method for printing arrays of neurons. This work has two endpoints. One is to use a neural array as an experimental testbed for investigating neuronal cell growth hypotheses. The other endpoint is to enable the next generation of cell-based sensors. Herein we compare microcontact printing(More)
Diffuse axonal injury (DAI), a major component of traumatic brain injury, is a progressive event that may lead to secondary neuronal death. DAI is thought to be initiated by mechanically-induced increases in axolemmal permeability resulting in disruption of the cytoskeleton and blockade of axonal transport. We report an in vitro model that mimics important(More)
The guidance of axons to their proper targets is not only a crucial event in neurodevelopment, but also a potential therapeutic target for neural repair. Axon guidance is mediated by various chemo- and haptotactic cues, as well as the mechanical interactions between the cytoskeleton and the extracellular matrix (ECM). Axonal growth cones, dynamic ends of(More)
Correct wiring of the nervous system requires guidance cues, diffusible or substrate-bound proteins that steer elongating axons to their target tissues. Netrin-1, the best characterized member of the Netrins family of guidance molecules, is known to induce axon turning and modulate axon elongation rate; however, the factors regulating the axonal response to(More)