Devin P. Sullivan

Learn More
Understanding the dynamics of biochemical networks is a major goal of systems biology. Due to the heterogeneity of cells and the low copy numbers of key molecules, spatially resolved approaches are required to fully understand and model these systems. Until recently, most spatial modeling was performed using geometries obtained either through manual(More)
Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these(More)
The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned(More)
High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many(More)
To my family and friends for the good times, laughs and support v Abstract Understanding cellular organization is a major goal of systems biology. Cellular organization affects the behavior of cells and many diseases and disorders impact the spatial organization of cells and their morphologies in turn. There are many current means of studying these systems(More)
  • 1