Devin Neal

Learn More
Densely arrayed skeletal myotubes are activated individually and as a group using precise optical stimulation with high spatiotemporal resolution. Skeletal muscle myoblasts are genetically encoded to express a light-activated cation channel, Channelrhodopsin-2, which allows for spatiotemporal coordination of a multitude of skeletal myotubes that contract in(More)
We demonstrate ensemble three-dimensional cell cultures and quantitative analysis of angiogenic growth from uniform endothelial monolayers. Our approach combines two key elements: a micro-fluidic assay that enables parallelized angiogenic growth instances subject to common extracellular conditions, and an automated image acquisition and processing scheme(More)
An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration behaviors. This work is motivated by two experimental works: (1) cell migration on 2-D substrates under various fibronectin(More)
Buckling is a highly nonlinear and singular phenomenon in thin beams, and is usually an undesired characteristic that must be prevented from occurring in engineered systems. Buckling, however, can be a useful mechanism for gaining extremely large displacement amplification, since a tiny displacement in the axial direction of the beam may lead to a large(More)
In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and(More)
Novel designs of an array of piezoelectric stack actuators using a unique buckling mechanism are presented in this paper. Multiple PZT actuator units with high gain displacement amplification mechanisms are arranged in parallel with spatial phase differences. Having an inherent kinematic singularity, the buckling mechanism provides not only an extremely(More)
Functional muscle tissue holds promise as a practical actuator for use in engineering applications. Previously, functional live-cell muscle actuators used for robotics have not scaled greater than about 10 µm, the size of a single monolayer of cells. We present a method to produce larger scale muscle actuators fully integrated into a mechanical(More)
A multi degree-of-freedom system using live skeletal muscles as actuators is presented. Millimeter-scale, optically excitable 3D skeletal muscle strips are created by culturing genetically coded precursory muscle cells that are activated with light: optogenetics. These muscle bio-actuators are networked together to create a distributed actuator system.(More)