Learn More
Formation of brain edema after intracerebral hemorrhage (ICH) is highly associated with its poor outcome. However, the relationship between cerebral edema and behavioral deficits has not been thoroughly examined in the preclinical setting. Hence, this study aimed to evaluate the ability of common sensorimotor tests to predict the extent of brain edema in(More)
1. Patch clamp recording techniques have been used to investigate the block by amiloride of the mechanosensitive cation-selective channel in frog (Xenopus laevis) oocytes. 2. Cell-attached and outside-out patch recording configurations were employed to study the differences in block produced when amiloride was present at either the extracellular (external)(More)
In this article, the actions, mechanisms and applications of various ions and drugs that interact with MG channels have been discussed. At present, no compound has been found that displays the high specificity and affinity exhibited by tetrodotoxin or alpha-bungarotoxin that proved so useful in the functional and structural characterization of the(More)
BACKGROUNDS Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). Neuronal apoptosis is involved in the pathological process of EBI. Hydrogen can inhibit neuronal apoptosis and attenuate EBI following SAH. However, the molecular mechanism underlying hydrogen-mediated anti-apoptotic effects in SAH has not been(More)
OBJECT Cerebral edema is a significant cause of morbidity and mortality in many disease states. Current therapies of cerebral edema are often ineffective in treating severe edema. Here, the authors develop a hollow fiber-hydrogel device (HFHD) for direct surface contact-based treatment of severe cerebral edema. METHODS Brain edema was induced in adult(More)
Practical limitations of the patch-clamp technique when recording mechanogated membrane ion channels are considered. Mechanical overstimulation of the patch or the cell from excessive suction/pressure protocols induces morphological and functional changes. In particular, the plasma membrane becomes decoupled from the underlying cytoskeleton to form either(More)
Weakly electric fish of the families Gymnotidae and Hypopomidae (Gymnotiformes) are able to locate the electric discharges from conspecifics or from dipole electrodes, and they demonstrate this by making rapid, well-directed approaches toward these electrical sources. A video tracking system was used to follow the movements of electric fish in a large tank(More)
Mechanosensitive (MS) channels are expressed in a wide range of cell types and have been implicated in diverse functions, including osmoregulation and mechanoreception. The majority of previous studies on single MS channels have been carried out on nonsensory cells and have dealt with the steady-state properties of the channel. Here we measure the dynamic(More)
The presence and regional localization of voltage-gated ion channels on taste cells in Necturus maculosus were studied. Lingual epithelium was dissected from the animal and placed in a modified Ussing chamber such that individual taste cells could be impaled with intracellular microelectrodes and the chemical environment of the apical and basolateral(More)
Gymnotiform electric fish are capable of locating and approaching an electrically discharging conspecific over a range of 1-2 m in a behavior called passive electrolocation. This paper investigates the movements of two species in experiments with approaches to stationary dipoles that are either silenced or jumped to a new direction during an approach.(More)