Learn More
The effect of arsenic (As) exposure on genome-wide expression was examined in rice (Oryza sativa L., ssp. Indica). A group of defense and stress-responsive genes, transporters, heat-shock proteins, metallothioneins, sulfate-metabolizing proteins, and regulatory genes showed differential expression in rice seedlings challenged with arsenate (AsV) and(More)
The population of India is extremely diverse comprising of more than 3,000 ethnic groups who still follow endogamy. Haemoglobinopathies are the commonest hereditary disorders in India and pose a major health problem. The data on the prevalence of β-thalassemias and other haemoglobinopathies in different caste/ethnic groups of India is scarce. Therefore the(More)
The physiological, biochemical, and proteomic changes in germinating rice seedlings were investigated under arsenic stress. A marked decrease in germination percentage, shoot, and root elongation as well as plant biomass was observed with arsenic treatments, as compared to control, whereas accumulation of arsenic and malondialdehyde (MDA) in seedlings were(More)
The present study demonstrates the first direct evidence of the novel role of OsACA6 in providing Cd 2+ stress tolerance in transgenic tobacco by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Cadmium, a non-essential toxic heavy metal, interferes with the plant growth and development. It reaches the leaves through xylem and may(More)
Phytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target(More)
Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal(More)
Phytochelatins (PCs) are naturally occurring thiol-rich peptides containing gamma (γ) peptide bonds and are well known for their metal-binding and detoxification capabilities. Whether synthetic phytochelatins (ECs) can be used as an alternative approach for enhancing the metal-binding capacity of plants has been investigated in this study. The metal-binding(More)
Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In(More)
Heterotrimeric G-protein complexes (Gα, Gβ and Gγ) operate at the apex of diverse signal transduction systems along with their cognate transmembrane G-protein coupled receptors (GPCRs) and appropriate downstream effectors in the plant. Rice Gα in response to stress has not been well studied. Here, we report the in silico analysis of Gα subunit from Oryza(More)
The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first(More)