Learn More
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance(More)
We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewpoint. We show that tree-structured models are surprisingly(More)
This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge in ten out of twenty categories. The system relies heavily(More)
We analyze the computational problem of multi-object tracking in video sequences. We formulate the problem using a cost function that requires estimating the number of tracks, as well as their birth and death states. We show that the global solution can be obtained with a greedy algorithm that sequentially instantiates tracks using shortest path(More)
We consider the machine vision task of pose estimation from static images, specifically for the case of articulated objects. This problem is hard because of the large number of degrees of freedom to be estimated. Following a established line of research, pose estimation is framed as inference in a probabilistic model. In our experience however, the success(More)
We describe a method for articulated human detection and human pose estimation in static images based on a new representation of deformable part models. Rather than modeling articulation using a family of warped (rotated and foreshortened) templates, we use a mixture of small, nonoriented parts. We describe a general, flexible mixture model that jointly(More)
Many state-of-the-art approaches for object recognition reduce the problem to a 0-1 classification task. This allows one to leverage sophisticated machine learning techniques for training classifiers from labeled examples. However, these models are typically trained independently for each class using positive and negative examples cropped from images. At(More)
We present a novel dataset and novel algorithms for the problem of detecting activities of daily living (ADL) in firstperson camera views. We have collected a dataset of 1 million frames of dozens of people performing unscripted, everyday activities. The dataset is annotated with activities, object tracks, hand positions, and interaction events. ADLs differ(More)
Object detection has over the past few years converged on using linear SVMs over HOG features. Training linear SVMs however is quite expensive, and can become intractable as the number of categories increase. In this work we revisit a much older technique, viz. Linear Discriminant Analysis, and show that LDA models can be trained almost trivially, and with(More)