Detlef Reichert

Learn More
A new expression for ion leakage from plant tissue, the tissue ionic conductance (g(Ti)), is compared with electrical conductivity (EC) and a commonly used damage index (I(d)) to test the ability of each expression to correctly describe leakiness in two model systems representing examples of physiological processes with well-known effects on membrane(More)
As demonstrated by means of the one-dimensional solid-state MAS exchange experiment (CODEX), the rate of the proton driven spin diffusion between backbone (15)N nuclei in totally enriched protein depends strongly on the magic angle spinning (MAS) frequency: spin diffusion at MAS frequency 16 kHz is about 4-5 times slower as compared to that at MAS frequency(More)
We report solid-state NMR investigations of the effect of temperature and hydration on the molecular mobility of collagen isolated from bovine achilles tendon. (13)C cross-polarization magic angle spinning (MAS) experiments were performed on samples at natural abundance, using NMR methods that detect motionally averaged dipolar interactions and chemical(More)
(15)N and (13)C NMR experiments were applied to conduct a comparative study of a cold shock protein (Csp) in two states-lyophilized powder and a protein embedded in a glassy trehalose matrix. Both samples were studied at various levels of rehydration. The experiments used (measuring relaxation rates R(1) and R(1ρ), motionally averaged dipolar couplings and(More)
For the first time, we have demonstrated the site-resolved measurement of reliable (i.e., free of interfering effects) (15)N R(1rho) relaxation rates from a solid protein to extract dynamic information on the microsecond time scale. (15)N R(1rho) NMR relaxation rates were measured as a function of the residue number in a (15)N,(2)H-enriched (with 10-20%(More)
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long(More)
We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also(More)
In this report, the application of a class of separated local field NMR experiments named dipolar chemical shift correlation (DIPSHIFT) for probing motions in the intermediate regime is discussed. Simple analytical procedures based on the Anderson-Weiss (AW) approximation are presented. In order to establish limits of validity of the AW based formulas, a(More)
A specific separated-local-field NMR experiment, dubbed Dipolar-Chemical-Shift Correlation (DIPSHIFT) is frequently used to study molecular motions by probing reorientations through the changes in XH dipolar coupling and T₂. In systems where the coupling is weak or the reorientation angle is small, a recoupled variant of the DIPSHIFT experiment is applied,(More)
The response to hydration of the internal protein dynamics was studied by the means of solid state NMR relaxation and magic angle spinning exchange techniques. Two proteins, lysozyme from bacteriophage T4 and human alphaB-crystallin were used as exemplars. The relaxation rates R1 and R1rho of 13C and 15N nuclei were measured as a function of a hydration(More)